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ABSTRACT

Many of the extreme ocean wave events generated by tropical cyclones (TCs) can be explained by
examining one component of the spectral wave field, the trapped-fetch wave (TFW). Using a Lagrangian
TFW model, a parametric model representation of the local TC wind fields, and the National Hurricane
Center’s hurricane database archive, a dataset of TFWs was created from all TCs in the Atlantic Ocean,
Gulf of Mexico, and Caribbean Sea from 1851 to 2005. The wave height at each hourly position along a
TFW trajectory was sorted into 2° � 2° latitude–longitude grid squares. Five grid squares (north of His-
paniola, Gulf of Mexico, Carolina coast, south of Nova Scotia, and south of Newfoundland) were used to
determine if extreme value theory could be applied to the extremes in the TFW dataset. The statistical
results justify accepting that a generalized Pareto distribution (GPD) model with a threshold of 6 m could
be fitted to the data: the datasets were mostly modeled adequately, and much of the output information was
useful. Additional tests were performed by sorting the TFW data into the marine areas in Atlantic Canada,
which are of particular interest to the Meteorological Service of Canada because of the high ocean traffic,
offshore drilling activities, and commercial fishery. GPD models were fitted, and return periods and the
95% confidence intervals (CIs) for 10-, 15-, and 20-m return levels were computed. The results further
justified the use of the GPD model; hence, extension to the remaining grid squares was warranted. Of the
607 grid squares successfully modeled, the percentage of grid squares with finite lower (upper) values for
the 10-, 15-, and 20-m return level CIs were 100 (80), 94 (53), and 90 (16), respectively. The lower success
rate of 20-m TFW CIs was expected, given the rarity of 20-m TFWs: of the 5 713 625 hourly TFW points,
only 13 958, or 0.24%, were 20 m or higher. Overall, the distribution of the successfully modeled grid
squares in the data domain agreed with TFW theory and TC climatology. As a direct result of this study,
the summary datasets and return level plots were integrated into application software for use by risk
managers. A description of the applications illustrates their use in addressing various questions on extreme
TFWs.

1. Introduction

Tropical cyclones (TCs) that generate extreme ocean
waves in midlatitudes (e.g., Luis, in 1995; Danielle, in
1998; and Juan, in 2003) exhibit two common features:
the TC traveled in a straight line for at least 18 h and
the speed exceeded 10 m s�1. As explained in Bowyer
and MacAfee (2005, hereinafter BM5), the continued
forcing of the waves by the wind from the synchronicity
of the TC’s motion and the acceleration of the growing
waves results in a trapped-fetch wave (TFW) situation
whereby the significant wave height Hs (the average

height from trough to crest of the one-third highest
waves) can become much greater than for waves gen-
erated by a stronger but slower-moving TC. While
TFWs represent only one component of the spectral
wave field, and optimum synchronicity is extremely
sensitive to TC speed, case studies showed that ob-
served extreme waves can be predicted by a simple
Lagrangian TFW model (MacAfee and Bowyer 2005,
hereinafter MB5). Such a model is used operationally
at the Canadian Hurricane Centre (CHC) to predict
extreme wave events with TCs affecting Atlantic
Canada.

The CHC TFW model uses the significant wave
method of Bretschneider and Tamaye (1976) and wind
fields created by a TC parametric wind model as de-
scribed in MB5. The wind model inputs are TC track
position and intensity (maximum wind and central pres-
sure). Model-specific parameters (e.g., radius of maxi-
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mum winds) are set using statistical methods computed
using the input parameters (MacAfee and Pearson
2006). Substituting position and intensity data from the
National Hurricane Center’s hurricane database ar-
chive (HURDAT; Jarvinen et al. 1984), the same
method can be used to generate wind fields and TFWs
along any historical TC. The resulting dataset, covering
the Atlantic Ocean, Gulf of Mexico, and Caribbean
Sea, contains examples of extreme waves (e.g., 32-m Hs,
generated by Debby in 1982). A logical question is, how
often do extreme waves from TCs occur in particular
areas of the Atlantic Ocean, Gulf of Mexico, or Carib-
bean Sea?

Modeling the occurrence of extreme events is of rec-
ognized importance because of the potentially adverse
effects of the resulting circumstances (Easterling et al.
2000). A branch of statistics, namely extreme value
theory, has been developed in the past century to ana-
lyze the frequency and severity of such extreme events.
Early references on this subject include Fisher and Tip-
pett (1928) and Gumbel (1958). Research in the past
few decades has found more robust and sophisticated
techniques for modeling extreme phenomena (e.g.,
Pickands 1975; Smith 1984).

The study of rare climate and weather events is an
active area of research, including recent work on ex-
treme precipitation, wind speeds, and air quality (e.g.,
Smith 1989; Brabson and Palutikof 2000; Beguería and
Vicente-Serrano 2006; Jagger and Elsner 2006). Hind-
cast ocean wave datasets based on kinematically recon-
structed wind fields, with particular attention to TC
winds, were examined for extreme events and trends
(Swail et al. 2000; Swail and Cox 2000; Wang and Swail
2002). Van Gelder et al. (2000) examined the tails of
wave-height distribution statistics. Recently, return pe-
riods for high waves in the Gulf of Mexico based on

observations during Hurricane Ivan were determined
by Panchang and Li (2006).

In this study, such analysis is performed on the his-
torical synthetic TFW data generated using HURDAT
information by creating two deriving datasets. First,
TFW hourly data positions were sorted into 2° � 2°
latitude–longitude grid squares covering the Atlantic
Ocean, Gulf of Mexico, and Caribbean Sea. The TFW
hourly positions were also sorted into the marine areas
in Atlantic Canada (Fig. 1 and Table 1), which are of
particular interest to the Meteorological Service of
Canada (MSC) because of the high ocean traffic, off-
shore drilling activities, and commercial fishery. MSC
issues forecasts and warnings for these areas, and an
assessment of the suitability of using the extreme value
analysis as input during TC events was warranted. Sec-
ond, for each grid square and marine area, time series
spanning the June to November hurricane season were
extracted.

Using these datasets a suitable statistical model was
developed and tested for five separate grid squares in
distinct parts of the Atlantic Ocean, Gulf of Mexico,
and Caribbean Sea with observed high-wave activity.
Additional tests were performed using the marine ar-
eas. After evaluation, the model was fitted for all grid
squares in the study region, so that the output inference
on return periods and levels in different grid squares
could be interactively compared by risk managers, us-
ing tools specifically designed for this purpose.

Creation, contents, and mining of the TFW dataset
are outlined in section 2. A review of extreme value
theory and selection of appropriate methods is pre-
sented in section 3. Application of these techniques to
the TFW dataset appears in section 4. The results and
discussion of the analysis are given in section 5. A brief
description of the applications used by risk managers to

FIG. 1. Marine areas in Atlantic Canada subjected to GPD
analysis. The area names corresponding to each number are listed
in Table 1.

TABLE 1. Atlantic Canada marine areas depicted in Fig. 1.

Identification
No. Area name

Identification
No. Area name

1 Fundy 11 East Scotian slope
2 Grand Manan 12 Fourchu
3 Lurcher 13 Banquereau
4 Browns Bank 14 Laurentian Fan
5 Georges Bank 15 Southwest coast
6 Southwestern

shore
16 South coast

7 Lahave Bank 17 East coast
8 West Scotian

slope
18 Northern Grand

Banks
9 Eastern shore 19 Southeastern

Grand Banks
10 Sable 20 Southwestern

Grand Banks
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display the TFW trajectories and results of the extreme
value analysis are presented in section 6. A summary
and conclusions complete the paper in section 7.

2. TFW dataset

Several TFW datasets were used in this study, and
the construction and use of each dataset are described
in the following sections.

a. Trajectory dataset

HURDAT (information online at http://www.nhc.
noaa.gov/pastall.shtml) provided track latitude and lon-
gitude, time (UTC), maximum wind speed (kt; 1 kt �
0.5144 m s�1), and minimum central pressure (mb) at
6-h intervals for all TCs in the Atlantic Ocean, Gulf of
Mexico, and Caribbean Sea from 1851 to 2005. The 6-h

data for each recorded TC was linearly interpolated to
hourly values.

As described in MB5 and illustrated in Fig. 2a, a grid
(37 � 30; 0.1° latitude resolution) aligned along the
instantaneous TC motion vector and right-of-track was
defined at each hourly TC position, as indicated by the
circle and TL label in Fig. 2a.

Surface wind observations over the ocean are limited
to buoys, ships, and, more recently, synthetic winds
constructed from satellite data (e.g., Chelton et al.
2006). Reanalysis projects (e.g., Kalnay et al. 1996)
have created surface wind fields; however, these grids
neither span the period of study nor provide the winds
at the desired resolution; hence, a parametric model
was used. MacAfee and Pearson (2006) describe sev-
eral parametric wind model formulations, various tech-

FIG. 2. Schematic diagram showing the successive steps in modeling TFWs at a track loca-
tion (circled and labeled TL): (a) construct a model grid right-of-track, oriented parallel to the
storm motion Vst (heavy arrow); (b) create a wind field using a parametric wind model; (c)
using each grid point compute a TFW, then select the dominant TFW from each row. The
dominant trajectory for the TL is denoted by a heavier arrow.
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niques to set model-specific parameters, and validation
against 2D wind fields (H*WIND; Powell and Houston
1996) and buoy data. Based on the validation results,
the enhanced method and Holland model were selected
to create the wind vectors illustrated in Fig. 2b.

MB5 describes the Lagrangian TFW model and
shows validation of the computed wave heights against
buoy data, scanning radar altimetry data, and full spec-
tral wave model output. Operationally, the TFW model
output is included in CHC forecast bulletins. Hence, we
consider the model a valid approach for estimating ex-
treme waves with TCs. Using the wind fields along the
track, the dominant trajectories for each row across
each hourly grid were computed as illustrated in Fig. 2c.
Each grid point seeds a new set of trajectory calcula-
tions. As the wave traverses downstream grids, the
wave height was computed in 1-h time steps using the
local wind field, ignoring wave–wave interaction. The
output data consisted of hourly values along each tra-
jectory of the wave’s latitude and longitude, Hs (m),
period (s), length or distance over which growth oc-
curred (n mi; 1 n mi � 1.852 km), the duration or
elapsed time (h) during which TFW growth occurred to
reach that location, and the angle (°True) of the trajec-
tory.

The preceding grid construction and wind field and
trajectory calculations were repeated for all TCs from
1851 to 2005. In total, the dataset consisted of 5 713 625
hourly wave points: 13.6% of the wave heights were 10
m or higher, 2.4% 15 m or higher, and 0.24% 20 m or
higher.

Note that parametric wind models are formulated
using observed data, and the wind field is considered
representative of a TC with a climatological size–
intensity relationship and a single eyewall: TCs with
symmetric wind fields or with concentric eyewalls may
not be adequately depicted (MacAfee and Pearson
2006). Different formulations may result in variations
in the wind field, and TFW modeling is sensitive to
these variations (BM5); however, the difference in
wave heights is typically � 10% (MB5). Thus, we con-
sider our computed TFWs to be a realistic, but syn-
thetic, representation of the extreme waves in TCs from
1851 to 2005.

This trajectory information formed the basis of the
two deriving datasets created for study and analysis:
first, the sorted dataset for overall risk and data visu-
alization; second, the time series dataset for the statis-
tical methods in sections 3–5.

b. Sorted dataset for risk assessment

To create risk-potential datasets, the trajectories
were sorted into 2° � 2° latitude–longitude grid

squares, as illustrated in Fig. 3a. Using the latitude and
longitude, each hourly position along a given trajectory
was assigned to a grid square. The recorded TFW
model outputs were then sorted into categories: Hs 1 m,
period 1 s, duration 1 h, length 5 n mi, and angle 5°. If
successive hourly positions on the same trajectory fell
in the same grid square, the position with the highest
wave growth was recorded, ignoring the earlier posi-
tions and values. In addition, the name, year, and high-
est Hs for each TC contributing to any given grid square
were recorded on a grid square–by–grid square basis.
The grid square category data (counts of Hs, period,
length, duration, and angle), the contributing TC infor-
mation (name, year, and grid square–specific maximum
Hs), and the extracted extreme maximum wave and
direction were sorted by month and recorded in a plain-
text file.

Figure 3a shows the grid squares for September,
color coded based on the highest TFW in the grid
square. Figure 3b shows the frequency of TFW Hs for
the grid square south of Newfoundland, centered at
41°N, 57°W and identified by the X in Fig. 3a. Note that
the TFW tail beyond 20 m was generated by six TCs:
the second TC in 1857; the fourth TC in 1870; the fifth
TC in 1899; the tenth TC in 1916; the fourth TC in 1949;
and Debby in 1982. This plot uses all trajectory–grid
square intersections, ignoring the tendency of multiple
TFWs from upstream grids for the same TC to arrive in
the grid square at approximately the same time. Hence,
these frequency plots acknowledge the existence of ex-
treme waves, but inferences from this initial analysis
are limited. The main value of this analysis is to identify
grid squares with significant and extreme TFW activity
that can be studied further using more rigorous data
extraction techniques and statistical methods.

Using polygonal outlines for each marine area, the
sorting procedure was repeated to assess if such a
dataset was useful to forecast operations. Overall, the
TFW probability data for the larger marine areas were
useful but lacked the detail provided by the individual
grid squares within a given area.

c. Time series dataset for extreme value analysis

To create datasets suitable for the application of sta-
tistical methods, first the analysis time period had to
be chosen. With the continuing reanalysis of the
HURDAT database (Landsea et al. 2002; Feuer et al.
2004) to improve its precision and relevance, it seemed
appropriate to make use of the entire duration of the
trajectory dataset, recognizing inherent weaknesses as
stated by Landsea et al. (2006): “Tropical cyclone ‘best
track’ data sets are finalized annually by operational
meteorologists, not by climate researchers, and none of
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the data sets have been quality controlled to account
for changes in physical understanding, new or modified
methods for analyzing intensity, and aircraft/satellite
data changes.” From a statistical viewpoint the longer
time span provided more precise model estimates, that
is, with lower variance. Landsea (1993) described the
interannual variability in hurricane activity. As such,
the longest data series possible is necessary to yield the
most robust estimates.

Initial data mining was performed on the output tra-
jectories to sort the wave events by time and location.

In this process, the data were reformatted into an
hourly time series of Hs in each grid square. Since the
majority of the time spans do not have TFW activity,
zeros were used as placeholders for these hours. This
gives all time series a consistent length and allows the
time intervals between successive TFW events to be
examined. The zeros do not add to the number of ex-
treme waves and hence will not affect later estimates on
the distribution of extreme wave heights. Further, TC
activity is seasonal, with the Atlantic hurricane season
running from 1 June to 30 November of each year. As

FIG. 3. (a) Sorted 2° � 2° lat–lon grid squares of TFWs for September. (b) Frequency plot
of TFW heights (m) for the grid square centered at 41°N, 57°W, indicated by the X in (a).
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observations of TCs from the remainder of each year
largely do not contribute to the understanding of ex-
treme wave events (Landsea 1993, his Table 3), events
outside of the hurricane season were eliminated from
the time series. This resulted in 183 days (4392 hourly
values) per year being included in this study.

As an example, consider the plot of wave heights
over time for the grid square south of Newfoundland,
(Fig. 4). Each point represents one hourly observation.
In this particular raw time series, there were 1832
hourly values that exceeded a height of 5 m.

3. Extreme value theory

Extreme value theory is concerned with the distribu-
tion of rare events, rather than usual occurrences. For
TFW data, the rare events are the exceptionally high
waves. A method to model the frequency and severity
of the waves requires some background statistical
theory. The complete development is mathematically
demanding, so the interested reader may refer to the
referenced accounts.

Let X1, X2 , . . . , Xn be a sequence of independent and
identically distributed (iid) random variables drawn
from a continuous distribution function F. The precise
underlying distribution F may not be known. For ex-
ample, this sequence may be a time series with n ob-
servations, where each observed value does not depend
on its neighbors, with the overall distribution of the
observations remaining stable over time. The observa-
tions of interest here are not the bulk of the dataset but
rather the unusually large values, so let Mn � max(X1,
X2 , . . . , Xn). This will be the maximum value observed
after n periods. Then, for the distribution of Mn, for any
value x,

Pr�Mn � x� � Pr�X1 � x, X2 � x, . . . , Xn � x�

� Pr�X1 � x� � Pr�X2 � x� � · · · � Pr�Xn � x�

� Pr�Xn � x�n

� F n�x�. �1�

For inference to be made on Mn, Fisher and Tippett
(1928) looked for sequences of real constants an � 0, bn

such that (Mn � bn)/an would converge in distribution
to a nontrivial distribution function H. With some re-
arrangement and the above, this can be written as

lim
n→�

Pr�Mn � bn

an
� x� � lim

n→�
Pr�Mn � anx � bn�

� lim
n→�

Fn�anx � bn� � H�x�.

�2�

As detailed by Gnedenko (1943), in the extremal types
theorem, if H exists, H must belong to the generalized
extreme value (GEV) distribution. The GEV can be
parameterized using the location (	), scale (
), and
shape (�) as

H�x� � exp���1 � �
�x � ��

� ��1���, �3�

where [1 � �(x � 	)/
] � 0, and 
 � 0. This one
expression encompasses three families of more familiar
distributions, namely the Gumbel, Frechet, and
Weibull. The Gumbel case can be obtained by taking
the limit � → �. Gumbel (1958) showed that essentially
all common continuous distributions satisfy the condi-
tion that the sequences an � 0, bn exist. Satisfying this
condition is also known as being in the domain of at-
traction of an extreme value distribution. For modeling
purposes, maximum values may usually be acceptably
fitted to the GEV, because of the convergence proper-
ties outlined above.

This classical theory on the GEV has been used
widely to make inferences on data that consist of a
series of maxima, such as annual maxima, on various
environmental data (Hosking et al. 1985). A natural
extension to this approach would involve using more
data than simply the maxima. For example, with regular
measurements being taken, it may be useful to incor-
porate a larger collection of extreme data points for
modeling purposes. Pickands (1975) proposed a
method for using the largest m observations from a
dataset. The choice m is assumed to be much smaller
than the number of observations n but typically large
enough to include more data than a GEV model. Fol-
lowing Pickands (1975), a starting assumption was for-

FIG. 4. Plot of hourly TFW heights for the grid square centered
at 41°N, 57°W.
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mulated for the arbitrary continuous distribution func-
tion F and a real constant c that

lim inf sup
u→ infx:F�x��1�a�0x�0

| 1 � F �u � x�

1 � F �u�

� exp���
0

x�a 1

�1 � ct��
�| � 0, �4�

where (1 � ct)� � max(0, 1 � ct), and it was shown that
this condition is equivalent to F being in the domain of
attraction of an extreme value distribution. Note that

Pr�X � u � x|X � u� �
1 � F �u � x�

1 � F �u�
�5�

is the conditional probability that X exceeds x � u
given that X exceeds u. Thus, for u sufficiently large, it
follows from Pickands’s assumption that, for a � 0,

1 � F �u � x�

1 � F �u�
� exp���

0

x�a 1

�1 � ct��
�. �6�

Integrating the right-hand side for the three different
cases for c, namely c � 0, c � 0, and c � 0, yields (1 �
cx/a)�1/c for c � 0 and exp(�x/a) for c � 0. Letting G
denote the conditional distribution of X given it ex-
ceeds a threshold u, the amount x by which an obser-
vation exceeds u is approximately distributed as

G�x� � 1 � �1 � cx�a��1�c, c 	 0

G�x� � 1 � exp��x�a�, c � 0. �7�

The observations in the dataset that are greater than u
are exceedances over the threshold. This distribution
function is known as the generalized Pareto distribution
(GPD) where c and a are the shape and scale param-
eters, respectively. Therefore, for u sufficiently large,
the GPD is a valid approximation for threshold exceed-
ances in data drawn from any common continuous dis-
tribution. In applications, rather than choosing m di-
rectly, m is often inferred by choosing the threshold u.
The value m is then the number of observations greater
than u. In the GPD, the c � 0 case is simply the expo-
nential distribution, c � 0 yields the ordinary Pareto
distribution, and c � 1 reduces to the uniform distribu-
tion. The parameter c controls the shape of the distri-
bution, with the tail weight increasing with c. For c � 0,
the probability density is positive for all x � 0. The tail
is light when c � 0, and the density has a finite upper
endpoint, being nonzero only for 0 � x � |a/c|.

The GPD has been used frequently to analyze the
severity of extreme events that exceed a threshold, also
known as “peaks-over-threshold” (POT) modeling
(e.g., Smith 1989; Beguería and Vicente-Serrano 2006).

The m threshold exceedances Xi � u when Xi � u are
fitted to a GPD by methods such as maximum likeli-
hood or probability-weighted moments (Hosking and
Wallis 1987). The larger portion of data used to build
the model, relative to fitting maxima, allows more pre-
cise parameter estimates for a time series of a given
length, as illustrated by Madsen et al. (1997). This basic
GPD fit assumes that the model parameters do not vary
over time; that is, all the exceedances come from the
same distribution.

Returning to the original sequence of random vari-
ables, let Y1, Y2 , . . . , Ym denote the times of m obser-
vations that exceeded the threshold, retaining the order
in which they occurred. The times between successive
events are Ti � Yi�1 � Yi, for i � 1, 2, . . . , m � 1. The
sequence of Ti can be modeled as the event interarrival
times of a Poisson process (e.g., Beguería and Vicente-
Serrano 2006). The simplest case is to use a homoge-
neous Poisson process and to assume that the exceed-
ance sizes and event times are completely independent.
If time dependence in the arrival intensities is present,
a nonhomogeneous Poisson process may be more ap-
propriate. Given a fitted GPD model for the threshold
exceedances XYi � u and a fitted homogeneous Poisson
process with a constant intensity � for the Ti, quantities
such as the return period may be calculated. The return
period is defined as the expected time between two
consecutive events of a given magnitude, or return
level. Let T be the event when an extreme value ex-
ceeding u occurs. Suppose that a return level of some
x � u is chosen. Given an event exceeding u, it exceeds
x with probability 1 � G(x � u). Using the indepen-
dence assumptions, the interarrival times of events ex-
ceeding x thus form a thinned Poisson process with
intensity �[1 � G(x � u)]. The time between two con-
secutive events is then exponentially distributed, with
mean 1/�[1 � G(x � u)]. Therefore, the return period
t as a function of the desired return level x is

t�x� �
1


1 � G�x � u��
. �8�

4. Application to the TFW dataset

The extreme value theory as described above re-
quires a number of assumptions. By using one set of
parameters for the GPD of wave-height extremes in
each grid square, any particular extreme is assumed to
be independent of the time at which it occurs as well as
wave extremes that precede or follow it. If true, the
frequency distribution of extreme wave heights at each
particular location should remain stable over time and
not be subject to significant variation. This presents
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problems for climatological data such as TFWs. As de-
scribed by BM5, the synchronicity of the winds and the
wave growth is sustained by the TC over many hours
and long distances. The resulting series of waves can
thus impact a given location over a period of hours. In
the present time series, this translates to large wave
heights being recorded for a string of consecutive hour
values. Yet, this prolonged period of impact originates
from one TC, and hence nearby hour values will in fact
be statistically dependent. It would be erroneous to
consider these as separate independent events.

Assuming we have treated the TFW data for hourly
dependence, a homogeneous Poisson process for event
arrival times will still require the time between TC
events that drive the TFWs to be iid. Landsea (1993)
showed that some fluctuations and variability in TC
occurrence and intensity can be expected, both over
different months in the same year and between differ-
ent years. Thus, these same fluctuations may be mir-
rored in the TFW model output, as it is driven by these
very winds. The effect of the annual cycle should be
somewhat alleviated as a result of our restriction to the
Atlantic hurricane season. This iid assumption will be
checked carefully with plots and diagnostics. If a con-
stant intensity assumption fails, further study and a
more complex model may be required.

The approach taken here to address the time depen-
dence is known as declustering. This procedure has
been applied for a variety of environmental variables
because of similar persistence in natural processes (e.g.,
Smith 1989; Beguería and Vicente-Serrano 2006). Sup-
pose a threshold u has been chosen. The first time an
observation exceeds u is marked as the beginning of a
cluster. The cluster continues until a specified number
of consecutive values fall below u. All observations
within that cluster will then be treated as one distinct
event in analysis. Typically, the maximum value re-
corded within the cluster is used as the representative
value. The next cluster then begins when a subsequent
threshold exceedance is encountered. This clustering
interval should thus be chosen large enough to span the
longest TFW event but not so long that separate TC
events generating TFWs become indistinguishable.
This restriction was satisfied by examining the numbers
of distinct clusters found over different cluster sizes.

The choice of threshold is also an important consid-
eration and a subject of research (e.g., Lang et al. 1999;
Beguería 2005). From the theory presented above, it is
necessary for u to be high enough for the GPD approxi-
mation to be valid. However, should u be too large,
there will be insufficient data to fit a model. One
method to determine the threshold is the mean excess
plot, constructed by computing the average exceedance

over the threshold over a series of threshold values.
The resulting plot should appear approximately linear
after an appropriate minimum threshold satisfying the
above criteria is reached. Another method used to
verify the selected threshold is to plot the fitted param-
eter values over a series of threshold values. When an
appropriate threshold is reached, the parameter esti-
mates should become relatively stable.

For estimating model parameters, the method of
maximum likelihood (ML) will be used. Smith (1984)
showed that when c � �0.5, the ML estimators for the
GPD will be asymptotically efficient under certain
regularity conditions. For estimating � in the Poisson
process, the ML estimate is simply the number of
events divided by the time period.

The statistical calculations were performed on a
desktop computer using the software package R with
the evd library.

5. Analysis results and discussion

The methodology described in section 4 was first ap-
plied to a sample of representative grid squares that
exhibited high TFW activity. The five grid squares se-
lected from general areas in the data domain are listed
in Table 2. The procedure used to fit GPDs to these
grid squares is outlined below.

First, an appropriate clustering interval was chosen
for each grid square. Figure 5 shows the number of
TFW events present in the data plotted against the
length of cluster intervals, at four different threshold
values: 1, 3, 6, and 9 m. The plots confirm that there are
many more events with a smaller threshold value. The
number of separate events identified by the different
cluster sizes decreases rapidly as cluster size increases;
high waves close in time become grouped into single
events. This is particularly true for the higher thresh-
olds. It appears that the two grid squares from Atlantic
Canada require a longer cluster interval for the number
of events to stabilize. From TFW theory (BM5), this is

TABLE 2. Characteristics of the grid squares chosen for sample
analysis. Nraw is the number of raw TFW exceeding 5 m, and Hs is
the maximum TFW height (m). The letter identifiers for each grid
square correspond to panels in the figures.

Location
Figure panel

identifier

Grid square
center

Hs

(m) Nraw

Lat
(°N)

Lon
(°W)

North of Hispaniola a 21.0 69.0 20.66 2895
Gulf of Mexico b 29.0 87.0 20.64 3199
Carolina coast c 31.0 73.0 23.21 3989
South of Newfoundland d 41.0 57.0 28.28 1834
South of Nova Scotia e 41.0 63.0 27.13 1936
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FIG. 5. Number of distinct events plotted against cluster interval
for four different threshold values for the grid squares in Table 2:
(a) north of Hispaniola, (b) Gulf of Mexico, (c) Carolina coast, (d)
south of Newfoundland, and (e) south of Nova Scotia.
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likely due to the longer straight distance that the waves
can travel during their approach to these higher lati-
tudes. For all five grid squares, an interval of 120 h
appears sufficient for declustering the TC occurrences
that generated the TFWs. The number of events iden-
tified does not change when the interval is further in-
creased to 144 h.

Second, a similar approach was used to obtain an
appropriate threshold choice, given a cluster interval of
120 h. Figure 6 shows estimates of scale and shape pa-
rameters for different threshold values for the five grid
squares. In the figure, scale estimates have been modi-
fied by subtracting the product of threshold and esti-

mated shape, to allow comparison across different
thresholds.

The corresponding mean excess plots appear in Fig.
7. Based on Figs. 6 and 7, the model estimates appear
stable in the range of 6–10 m for all five grid squares.
Beyond 10 m, fluctuations are evident as the sparse
available data yields large variances in the estimates, as
evident by the widening 95% confidence intervals in
Fig. 6. The generally downward-sloping plots in Fig. 7
indicate a relatively light tail in the data, confirmed by
the negative shape parameter estimates from Fig. 6.
With the possible exception of the Hispaniola grid
square (Fig. 7a), the mean excesses are approximately

FIG. 6. Maximum likelihood GPD parameter estimates for a se-
quence of thresholds for the grid squares in Table 2. Bars are 95%
confidence intervals.
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FIG. 7. Mean excess plots for the grid squares in Table 2.
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FIG. 8. Plots to check for homogeneous Poisson ar-
rival times for TFW events for the grid squares in Table
2. (a)–(e) Rescaled time check plots are shown on top
and Q–Q plots are on the bottom.
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linear beyond a threshold of 5 m, suggesting that a GPD
fit should be plausible with a threshold of 5–6 m.
Hence, the remainder of the fitting procedure will use 6
m as the threshold.

Third, the assumption that the event arrival time is a
homogeneous Poisson process was verified. Let �� be
the ML estimate for the intensity of the process, which
is simply the number of event clusters divided by the
length of the time period. From probability theory, the
sequence of interarrival time gaps in a homogeneous
Poisson process is iid exponential with rate 1/��. Using
Ti as defined in section 3, the rescaled quantities Ti /��
will be iid unit-exponential if the assumption holds. The
rescaled values plotted in the top panel of each of Figs.
8a–e were used to check for trend over time. Since the
abscissa of these plots is the event indices in time order,
if there is a trend present, the distribution of the scatter
points may shift from left to right across the plot. A
smooth fit curve was overlaid to detect such shifts.
Apart from a few visible outliers, in general, the slope
of each fitted curve is very flat: the maximum percent-
age difference from the mean of the curve to each point
of the curve does not exceed 12%, except for the Nova
Scotia grid square (Fig. 8e), which exhibits a maximum
of 31% difference. Apart from the Nova Scotia grid
square, this suggests that the time gaps between succes-
sive TFW events remain relatively stable throughout
the 155-yr period. Adding to the suspicion of the Nova
Scotia grid square (Fig. 8e), it also has two extreme
outliers. These indicate two very long periods in which
there was no TFW activity. Further, the points in this
grid square seem clustered more tightly in the lower
part of the distribution near the beginning of the 155-yr
period. These anomalies indicate potential model diffi-
culties for this grid square. The quantile–quantile (Q–
Q) plots of the interarrival times against the modeled
exponential distribution with rate 1/ �� are shown in the

bottom panels of each of Figs. 8a–e. There is some
degree of departure from the line of slope 1, most no-
tably in the upper region of the time intervals, where
the actual times between events are mostly longer than
expected. Any significance of this will be left to future
study. In particular, for the Nova Scotia grid square, the
two outliers (two rightmost points) are very influential,
pulling the Q–Q line away from the central portion of
the data. The bulk of the data from the five grid squares
fit adequately, so the homogeneous Poisson assumption
overall seems tenable and should not need to be seri-
ously questioned.

As an illustration of the dataset after the above han-
dling, consider the plot, shown in Fig. 9, of wave heights
over time for the Newfoundland grid square. Each
circle represents one distinct event. There are 1615
hourly values exceeding 6 m, which are grouped into
102 distinct clusters.

Fourth, a GPD model was fitted by ML to the grid
squares. An immediate check on the plausibility of the
GPD fit to the clustered data as a whole was done using
test statistics. The null hypothesis (H0: the data came
from a GPD) was tested using two standard test statis-
tics. Specific application of the selected tests to the
GPD is described in Choulakian and Stephens (2001).
The Cramér–von Mises (CM) statistic is defined by

�
i�1

n

zi � �2i � 1���2n��2 � 1��12n�, �9�

and the Anderson–Darling (AD) statistic by

�n � �1�n��
i�1

n

�2i � 1�lnzi � ln�1 � zn�1�i��, �10�

where zi is the ith-order statistic of the dataset, trans-
formed to a uniform (0, 1) distribution. Choulakian and
Stephens (2001) include a table of critical values of
these tests for a GPD. When both parameters must be
estimated, the critical values are dependent on the
shape parameter. For example, at c � 0, the acceptable
range of the test statistics at the 95% level are CM �
0.153 and AD � 0.974, while at c � �0.4, the limits are
CM � 0.201 and AD � 1.221. The fit summary for the
five grid squares is shown in Table 3. The standard
errors for the estimated parameters in Table 3 were
computed using the numerical approximate ML infor-
mation matrix, the variance of the score vector. The
shape parameter c appears to be significant and nega-
tive for all grid squares except Newfoundland. This in-
dicates a generally light tail with a finite probability
density endpoint |a/c|. The AD and CM statistics indi-
cate no problems for all except the Hispaniola grid
square, which is slightly over the acceptable range at
the 95% level. This indicates that the GPD model with

FIG. 9. Same as Fig. 4 except after setting the threshold (u � 6)
and declustering.
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the present parameters may be a poor fit for the His-
paniola time series.

Fifth, similar to plots checking for the Poisson pro-
cess, the iid distribution of wave heights over time must
be examined. Following the development by Davison
(1984), an empirical Laplace transform can be applied
to the excess amounts over the threshold, XYi � u. If
these values are in fact iid from the GPD with the es-
timated parameters, the transformation

zi �
1
c

ln�1 �
c�XYi � u�

a � �11�

should yield iid unit-exponential random variables rep-
resenting their relative size. The top panels of each of
Figs. 10a–e show the resulting relative size values zi

plotted against the time indices, which can be inter-
preted in the same way as Fig. 8. These show that the
slopes of the smooth curves are very flat, except for a
slight downward trend in the Nova Scotia grid square
(Fig. 10e). Any significance or causes of this apparent
aberration will not be investigated here but left to fu-
ture work. Q–Q plots of the wave-height quantiles
against the unit-exponential distribution appear in the
bottom panels of each of Figs. 10a–e. The Q–Q plots
also show that the data as a whole fit well to the GPD
model. Overall, this series of plots provides support for
iid in the GPD fit of wave heights over time.

Last, return period and return level calculations were
determined for the fitted models using Eq. (8) and stan-
dard bootstrap techniques. TFWs were extracted from
the set with repetition to obtain new datasets. For each
grid square, 1000 bootstrap samples were taken with
the same size as the clustered dataset, and each of the
new samples were used to generate a corresponding
return level. Figure 11 shows plots of expected return
periods against wave heights with goodness-of-fit
points: for a good fit the points should lie close to the
curve. Insets in each panel of Fig. 11 are the 95% con-
fidence interval (CI) for 10-, 15-, and 20-m return levels,
which are listed in Table 4. The 95% CI shown is the
empirical 0.025 and 0.975 quantiles. The CI for 10-m
events is very narrow, indicating good certainty for the

prediction. As 15- and 20-m events are rare, the result-
ing CIs are much wider. In grid squares where these
extreme wave heights almost never occur, the resulting
CI may not be useful. The computed upper endpoints
for such squares are extremely large and exceed the
software limit; these are shown as infinity in the results
(Fig. 11 and Table 4). The fitted model provides little
information and high uncertainty in these cases, as
there is no practical return period estimate possible
when none or very few such events occurred in the past.
The Carolina coast grid square (Fig. 11c) exhibited the
most frequent 10-m wave occurrence, but 20-m waves
become very sparse in that grid square. The grid
squares with the most frequent 20-m waves are the two
selected in Atlantic Canada (Figs. 11d,e), especially
south of Newfoundland (Fig. 11d). These results are not
unexpected, given known TC trajectory data (Landsea
1993), TFW theory (BM5), and TFW case studies
(MB5). Easterly winds in the Tropics push TCs west-
ward south of an area of high pressure (i.e., the Ber-
muda high). On the west side of the high pressure, near
the coast of North America, the circulation around the
high directs TCs slowly northwest, where they come
under the influence of increasingly strong westerly
winds. These westerly winds ultimately result in TCs
accelerating in a northeast direction. The Carolina
coast has a high frequency of passing TCs, but, because
of the prevalence for recurvature as they approach
North America, conditions favorable for TFW growth
are limited (BM5). Similarly, near Hispaniola (Fig. 11a)
and in the Gulf of Mexico (Fig. 11b) restricted open-
water distance and limits on TC speed and wave growth
synchronicity, due to the slower and often steady TC
motion, explain the infrequent extreme heights attrib-
uted to the TFW growth mechanism. However, in At-
lantic Canada, approaching accelerating TCs track
northeast for long distances, providing adequate time
and suitable conditions for extreme TFW formation.
This is especially true for the grid square south of New-
foundland, as waves that entered this grid square have
typically been generated from TCs traveling northeast
for an extended period after recurvature (e.g., Charlie,

TABLE 3. GPD fit summary for the selected analysis grid squares of Table 2. The columns are threshold (u), cluster interval (r),
number of exceedances in the raw dataset (Nraw), number of clusters (n), and estimates of scale (a) and shape (c) parameters (standard
error in brackets); AD and CM refer to the test statistics described in section 5.

Location u (m) r (h) Nraw n a (m) c AD CM

North of Hispaniola 6 120 2490 78 7.32 (0.99) �0.46 (0.09) 1.43 0.25
Gulf of Mexico 6 120 2526 97 5.40 (0.68) �0.31 (0.08) 0.45 0.08
Carolina coast 6 120 3228 133 5.79 (0.66) �0.25 (0.08) 0.31 0.04
South of Newfoundland 6 120 1615 102 5.95 (0.87) �0.08 (0.11) 0.36 0.05
South of Nova Scotia 6 120 1679 99 6.36 (0.83) �0.22 (0.09) 0.21 0.03
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FIG. 10. Plots to check the iid assumption for GPD
model parameters for the grid squares in Table 2.
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FIG. 11. Return period plots with confidence intervals for 10-, 15-,
and 20-m wave heights for the grid squares in Table 2. The cir-
cles are goodness-of-fit points [�1/log(pi), zi], i � 1, . . . , m, where
p1, . . . , pm is a sequence of probability points and z1, . . . , zm are the
data used in the fitted model, sorted into ascending order.
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in 1952; Debby, in 1982; Luis, in 1995; Danielle, in 1998;
and Gabrielle, in 2001).

Having completed a detailed analysis of these five
grid squares and finding useful results, the same GPD
model was independently fitted to the marine areas in
Atlantic Canada (Fig. 1 and Table 1) using the preced-
ing steps, sorting the hourly TFW data into polygonal
representations of each area. The larger marine areas
span many grid squares; however, the number of events
in a particular area may not be appreciably different
given the method of selecting the highest TFW value
from a trajectory traversing a given area. The results
are summarized in Table 5. The low test statistics pro-
vide some evidence that the GPD model fits adequately
to these datasets. In some areas, such as Fundy, the
small number of events in the raw data and after de-
clustering gives large variances in the parameter esti-
mates, and the validity of the model to these areas re-
quires further study. Nonetheless, these results provide
a very complete summary of how TFWs affect (or do

not affect) parts of Atlantic Canada. Table 6 shows a
return level summary. From these models, the areas
with the most TFW activity are the Grand Banks (areas
18–20 in Fig. 1) and Scotian slope (areas 5, 8, 11, and 14
in Fig. 1), consistent with the right-of-track TFW
buildup described by MB5.

The GPD model was then applied in the same way to
all of the remaining grid squares in the Atlantic Ocean,
Gulf of Mexico, and Caribbean Sea. Plots of return
period and the CI at the 95% level for 10-, 15-, and
20-m return levels were generated for each grid square,
where sufficient data existed. As depicted in Fig. 12a,
607 grid squares were successfully modeled. The CI for
the 10-m return level had a finite upper endpoint for
80% of the 607 grid squares (Fig. 12b). The CI for the
15-m return level had a finite lower endpoint for 94%
of the 607 grid squares, but only 53% had a finite upper
endpoint (Fig. 12c). The CI for the 20-m return level
had a finite lower endpoint for 90% of the 607 grid
squares, but only 16% had a finite upper endpoint (Fig.
12d). The region of useful model results is consistent
with TFW theory and TC climatology.

6. Application

The TFW trajectories, grid square and marine area
sorted data, and the results of the extreme value analy-
sis are accessible using LINUX-based graphical user
interfaces. These applications are currently used by
CHC operational forecasters and MSC marine special-
ists to address the following questions on extreme
TFWs: 1) how high are the highest TFWs likely at a

TABLE 5. Same as Table 3 but for the Atlantic Canada marine
areas depicted in Fig. 1 and listed in Table 1.

Area
u

(m)
r

(h) Nraw n a (m) c AD CM

1 6 120 22 7 0.73 (0.48) 0.35 (0.56) 0.14 0.02
2 6 120 75 14 1.94 (0.75) �0.12 (0.28) 0.46 0.07
3 6 120 258 27 3.52 (0.85) �0.21 (0.15) 0.27 0.04
4 6 120 524 36 5.19 (1.12) �0.32 (0.15) 0.85 0.14
5 6 120 1258 81 5.58 (0.83) �0.21 (0.10) 0.45 0.06
6 6 120 215 20 4.51 (1.41) �0.02 (0.22) 0.76 0.14
7 6 120 524 45 5.49 (1.20) �0.12 (0.16) 0.27 0.04
8 6 120 1525 88 6.02 (0.90) �0.21 (0.11) 0.28 0.04
9 6 120 306 36 2.69 (0.74) 0.06 (0.22) 0.21 0.03

10 6 120 575 51 4.07 (0.91) �0.02 (0.17) 0.26 0.03
11 6 120 1630 97 5.97 (0.85) �0.24 (0.10) 0.25 0.04
12 6 120 172 23 2.73 (0.86) 0.06 (0.24) 0.20 0.03
13 6 120 718 62 3.19 (0.63) �0.01 (0.15) 0.26 0.03
14 6 120 1393 88 4.89 (0.74) �0.02 (0.11) 0.25 0.03
15 6 120 268 28 3.42 (1.00) �0.01 (0.22) 0.32 0.06
16 6 120 163 21 1.55 (0.50) 0.19 (0.24) 0.28 0.04
17 6 120 211 23 2.63 (0.89) 0.30 (0.27) 0.34 0.05
18 6 120 441 42 2.78 (0.75) 0.40 (0.23) 0.49 0.07
19 6 120 940 72 3.90 (0.71) 0.15 (0.14) 0.36 0.06
20 6 120 1227 81 4.27 (0.76) 0.14 (0.14) 0.23 0.03

TABLE 4. The 95% bootstrap CI for return periods of specific
TFW heights for the selected analysis grid squares of Table 2.

Location
10-m CI
(yr, yr)

15-m CI
(yr, yr)

20-m CI
(yr, yr)

North of Hispaniola 3.2, 4.4 8.5, 19.5 94.5, �
Gulf of Mexico 3.1, 4.7 10.8, 32.8 97.9, �
Carolina coast 2.2, 2.9 6.1, 12.3 27.3, 292.0
South of Newfoundland 2.6, 3.7 5.6, 10.5 13.1, 38.5
South of Nova Scotia 2.7, 3.7 6.0, 12.6 18.9, 174.4

TABLE 6. Same as Table 4 but for the Atlantic Canada marine
areas depicted in Fig. 1 and listed in Table 1.

Area 10-m CI (yr, yr) 15-m CI (yr, yr) 20-m CI (yr, yr)

1 214.1, � 530.2, � 735.1, �
2 31.9, � 780.7, � 4873.3, �
3 14.0, 38.6 82.9, � 724.8, �
4 7.6, 14.7 26.4, 380.7 325.4, �
5 3.4, 5.1 9.1, 24.5 36.1, 1598.2
6 6.2, 13.5 25.9, 157.3 85.3, �
7 5.6, 10.6 13.1, 43.7 37.9, 1163.0
8 7.6, 14.7 26.4, 380.7 325.4, �
9 10.8, 32.8 46.1, 1419.6 133.1, �

10 5.9, 12.3 17.4, 61.9 52.8, 2072.0
11 2.8, 4.0 7.1, 15.7 28.3, 198.0
12 15.6, 136.6 55.9, � 160.0, �
13 6.2, 13.5 25.9, 157.3 85.3, �
14 3.3, 5.1 8.3, 20.5 20.7, 175.8
15 11.0, 33.9 36.2, � 130.0, �
16 28.7, � 101.2, � 196.5, �
17 12.1, 50.8 34.6, 965.7 66.0, �
18 8.0, 17.4 18.4, 76.8 31.8, 308.7
19 4.5, 7.2 10.3, 28.8 21.3, 119.4
20 3.8, 6.0 8.4, 20.1 17.4, 69.2
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particular location, 2) how realistic are the values, 3)
from what direction are the TFWs most likely to ap-
proach the location, 4) how much lead time is there for
preparation before the TFWs arrive, 5) what past TCs
had an impact on the location, and 6) how do past TCs
compare with a real-time prediction? As the datasets are
exploited, the application tools will be expanded. In this
context, Web-based versions are under consideration.

Figure 13 illustrates an application (CLIMVIEWER)
designed specifically to display TC tracks and TFW tra-
jectories. The full track and dominant trajectory from
each hourly grid for Floyd in 1999 are shown in Fig. 13a.
In the zoomed view shown in Fig. 13b, the dominant
TFW from each row of the right-of-track modeling grid
at the circled track point (1600 UTC 13 September
1999) is depicted. As illustrated in Fig. 13b, numeric
values of Hs, period, number of hours of TFW growth,
and TC HURDAT data (e.g., maximum wind) can be
added to the display.

Figure 14 shows an application (CHART) used to
access the grid square and marine area analyses. The
upper left-hand panel shows either the grid squares
color-coded based on the highest hourly wave height in
a specific month or valid lower and upper CI values
(e.g., Fig. 12). Clicking on a grid square (e.g., the south-
western tip of Florida) refreshes the remaining panels:
the upper right-hand panel displays plots of probability
and cumulative frequency for Hs, period, hours of wave
growth, distance covered during wave growth, TFW di-
rection frequency, and return periods (e.g., Fig. 11); the
lower right-hand panel lists TCs contributing TFWs to
the grid square, with the TC contributing the highest Hs

automatically highlighted, and its HURDAT data listed
in a table; and the lower left-hand panel displays the
tracks of the listed TCs, with the TC contributing the
highest TFW highlighted in a thicker line.

Figure 15 shows contours of the expected maxi-
mum TFWs in 5-, 10-, 15-, and 20-yr periods, generated

FIG. 12. (a) The 2° � 2° lat–lon grid squares with valid return period plots. (b)–(d) Grid squares with finite CI endpoints for 10-,
15-, 20-m return levels, respectively. The x denotes grid squares with a finite upper CI endpoint.
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FIG. 13. Example of an application (CLIMVIEWER) used to view the TFW trajectories: (a) dominant TFWs along
the track of Floyd in 1999; (b) zoomed view of TFWs computed for each row of the grid at one track point (circled) with
Hs, period, and duration values appended at the end of each trajectory. The day, hour, and maximum wind are shown
at HURDAT points.
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from an application (RPPLOT) using the fitted GPD
models.

As an example, consider using CHART and
CLIMVIEWER to locate and evaluate historical tracks
matching a real-time TC. During the real-time predic-
tion of Wilma in 2005, the operational TFW model in-
dicated 16-m waves near the southwest coast of Florida.
Using CHART, Isbell in 1964 was identified as having
a track similar to Wilma’s, but with 12-m TFWs. CLIM-
VIEWER was used to compare the details of the two
TCs: the maximum predicted TFWs for Wilma were

prior to crossing Florida, while Isbell’s were over the
North Atlantic after crossing Florida. The variation in
location was explained by the rapid acceleration of
Wilma after crossing Florida versus a more gradual ac-
celeration for Isbell. Further examination of the fre-
quency data and return period plots was used to qualify
if the forecast heights were abnormally high and sug-
gest different track and intensity scenarios.

Using raw TFWs from 1905 to 2004, a preliminary
trend analysis was presented in MacAfee (2006); how-
ever, the results were inconclusive. The analysis of

FIG. 14. Example of an application (CHART) for viewing the grid square and marine area analyses. (top left) Grid squares
color-coded by maximum Hs (m) for the month of October. (top right) Hs probability plot for the user-selected grid square centered
at 25°N, 81°W. (bottom right) List of TCs contributing TFWs to the selected grid square and track data for a particular TC (i.e., Wilma
in 2005). (bottom left) Tracks of contributing TCs with Wilma highlighted.
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monthly trends by amalgamating the entire basin and
fitting overall models to each month from June to No-
vember (hurricane season) may yield useful results;
however, this paper focused on justifying that an ex-
treme value analysis of TFWs was statistically sound.
Investigation of TFW trends in the extreme value
analysis and their relationship (if any) to TC trends in
intensity and monthly and annual frequency is a subject
of future work.

7. Summary and conclusions

A TFW dataset for all TCs in the Atlantic Ocean,
Gulf of Mexico, and Caribbean Sea from 1851 to 2005
was created using a Lagrangian TFW model, a para-
metric model depiction of the local TC wind fields, and
HURDAT track data. The hourly points along each
trajectory were sorted into 2° � 2° latitude–longitude
grid squares and the marine areas of Atlantic Canada.
The data samples in five representative grid squares
and marine areas were declustered to create iid

samples. These samples were subjected to statistical
analysis to determine if extreme value theory could be
used to model the extreme wave heights in the dataset,
in particular the peaks-over-threshold approach and
generalized Pareto distributions. The datasets were
mostly modeled adequately by the generalized Pareto
model, and much of the resulting inference was useful.
Further investigation may be appropriate for grid
squares in which potential anomalies were noted.
Nonetheless, the results warranted extension of the
generalized Pareto model to the remainder of the grid
squares.

As a result of this study, return period plots for the
marine areas and grid squares covering most of the
climatological TC domain were successfully created
and integrated into desktop applications for use by op-
erational Canadian Hurricane Centre forecasters and
marine specialists. Using illustrative examples, these
applications were described and some suggestions for
future development outlined.

FIG. 15. Contours of the highest Hs (m) expected from TC TFWs in 5-, 10-, 15-, and 20-yr periods.
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