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Abstract: Because of high dimensionality, correlation among covariates, and noise contained in data,1

dimension reduction (DR) techniques are often employed to the application of machine learning2

algorithms. Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and their3

kernel variants (KPCA, KLDA) are among the most popular DR methods. Recently, Supervised Kernel4

Principal Component Analysis (SKPCA) has been shown as another successful alternative. In this5

paper, brief reviews of these popular techniques are presented first. We then conduct a comparative6

performance study based on three simulated datasets, after which the performance of the techniques7

are evaluated through application to a pattern recognition problem in face image analysis. The gender8

classification problem is considered on MORPH-II and FG-NET, two popular longitudinal face aging9

databases. Several feature extraction methods are used, including biologically-inspired features (BIF),10

local binary patterns (LBP), histogram of oriented gradients (HOG), and the Active Appearance11

Model (AAM). After applications of DR methods, a linear support vector machine (SVM) is deployed12

with gender classification accuracy rates exceeding 95% on MORPH-II, competitive with benchmark13

results. A parallel computational approach is also proposed, attaining faster processing speeds and14

similar recognition rates on MORPH-II. Our computational approach can be applied to practical15

gender classification systems and generalized to other face analysis tasks, such as race classification16

and age prediction.17

Keywords: Dimension Reduction; PCA; LDA; FDA; KPCA; KFDA; SKPCA; SVM; Parameter18

Optimization; Gender Classification; MORPH-II.19

1. Introduction20

Due to advances in data collection and storage capabilities, the demand has been growing21

substantially for gaining insights into high-dimensional, complex-structured, and noisy data.22

Researchers from diverse areas have applied DR techniques to visualize and analyze such data23

[1,2]. DR techniques are also helpful to address the issues of collinearity and ”p� n” (i.e., number of24

features exceeding the sample size in a dataset), by projecting the data into a lower dimensional space25

with less correlation, so that classical statistical methods can be applied [3]. Principal Component26

Analysis (PCA) [4,5] is a well-studied algorithm with the goal of projecting input features onto a27

lower dimensional subspace while preserving the largest variance possible; lower dimensionality28

permits easier visualization, for example via heat maps. While PCA is a fully automatic algorithm, DR29

techniques that account for domain expertise via user input have also been more recently studied [6,7].30

For classification problems, in which the label information as the response variable is available, Linear31

Discriminant Analysis (LDA) (sometimes referred to as Fisher’s Discriminant Analysis (FDA)) can32

be used for DR by minimizing intra-class variation and maximizing inter-class variation [8,9]. Since33

PCA only utilizes the correlation or covariance matrices, it is considered an unsupervised approach,34
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whereas LDA is considered a supervised approach with labeling information built into its objective35

function. Despite the dissimilarities, both PCA and LDA search for linear combinations of the features36

and, therefore, can be applied in linearly separable types of problems [10]. The main challenge is that37

many problems in practical applications of machine learning are nonlinear [11,12]. For nonlinear DR,38

kernel methods are popular choices because of their flexibility [13–15], e.g, Kernel PCA [16], Kernel39

LDA for two classes [17], and more generalized Kernel LDA for multiple classes [18]. For kernel40

methods, it is also possible to design specialized kernels based on domain knowledge of a problem41

[19,20].42

Given the problems in image analysis of high dimensionality and complex correlation structures,43

DR techniques are often a necessary step [21]. Thus, variants of PCA, LDA, and their kernel extensions44

have been popular in computer vision with applications of image classification and discrimination45

[22–24]. Studies include Eigenfaces [25], Fisherfaces [26], face recognition with KPCA [27], face46

recognition with Kernel Direct LDA [28], 2D-PCA [29], 2D-LDA [30], among many others. When47

there are sufficient labeled face images, LDA is experimentally reported to outperform PCA for face48

recognition [26]. In the case of a small training set, the conclusion could be reversed [23]. Studies49

comparing classification performance of PCA, LDA, and their kernel variations include [31,32]. The50

connections among KLDA, KPCA, and LDA are further discussed in [33]. By incorporating labeling51

information into the construction of the objective function, Supervised Kernel PCA (SKPCA) [34]52

has been proposed for visualization, regression, and classification. A modified version of SKPCA for53

classification problems can be found in [35]. These studies suggest that SKPCA works well in practice54

among different DR algorithms [36–38]. Moreover, it has been found in [39] that with bounded kernels,55

projections from SKPCA are uniformly converging, regardless of the input features’ dimension.56

2. Associated Work57

In recent years, facial demographic analysis has become popular in computer vision, because of its58

broad applications in human-computer interaction (HCI), security, surveillance, and marketing, which59

can benefit from the automatic estimation of characteristics like age, gender, and race. Recent surveys60

on demographic estimation from biometrics are presented in [40,41]. Specifically, a major task is gender61

classification, aiming to automatically determine if a person is male or female. Beyond computer62

vision, the topic has been studied extensively by anthropologists, sociologists, and psychologists.63

Gender can easily be identified by humans, achieving 96% accuracy in an experiment classifying64

photographs of adult faces [42]. Automating gender classification has been a priority in real-world65

applications. A number of biometrics have been used to identify gender, including face, voice, gait,66

handwriting, and even the iris [41]. However, gender classification from faces is the most common,67

probably because photography of faces is non-intrusive and ubiquitous. Ng et al. provide a survey of68

gender classification via face and gait [43].69

Gender classification with faces launched in 1990, when neural networks were applied directly to70

pixels from face photographs [44,45]. Many other early studies utilized the geometric-based approach71

to represent human faces, relying on measurements of facial landmarks [46,47]. Though intuitive,72

such approaches are sensitive to the placement of landmarks, which can only accommodate frontal73

representations of the face, and may omit some important information from the face (such as texture of74

the skin). In recent years, the appearance-based methods have been more commonly adopted, which75

rely on a transformation of an image’s pixels [48–50]. Such methods capture both the geometric76

relationships of the face and texture information. However, a drawback is their sensitivity to77

illumination and viewpoint variations. Other issues are associated with the high dimensionality78

of the transformed pixels, which will be discussed further in the next paragraph. Some most recent79

gender classification studies involve convolutional neural networks (CNN) [51–54]. Though CNNs80

have reached state-of-the-art accuracy rates, they are known to be less interpretable than some other81

methods.82
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Pixels often contain high redundancy and noise, which cannot be removed completely by83

pre-processing steps. Hence, the vectors resulting from appearance-based feature extraction methods84

genetically inherit redundancy and noise. Popular image feature extraction methods include local85

texture techniques such as local binary patterns (LBP) [55–58], Gabor filters [59], biologically-inspired86

features (BIF) [60,61], and histogram of oriented gradients (HOG) [60]. Such methods could lead87

to a high dimension of extracted features, thwarting practical applications by increasing runtime88

and memory consumption. When "p � n", for which the dimension of the feature space exceeds89

the sample size of the dataset, a fundamental assumption of many standard statistical procedures is90

violated. Additionally, collinearity of features can cause numerical problems, while noisy features91

can obscure true relationships with the response variable and hinder predictive performance. These92

significant issues motivate the use of DR techniques. The fundamental goal of DR is to extract and93

retain information in a lower dimensional space. Many of these methods fall under manifold learning,94

identifying a low-dimensional manifold embedded in a high-dimensional ambient space [62].95

Even though PCA and LDA have been widely considered as popular and effective approaches96

for DR in machine learning, their kernel versions are much less investigated. To our best knowledge,97

KPCA, KLDA, and SKPCA have never before been directly compared on visualization and classification98

performance through simulations and practical applications to face image analysis problems.99

Our main contributions in this study can be summarized as follows. (1) The nonlinear manifold100

learning projections for KPCA, KLDA, and SKPCA are directly compared with visualization through101

simulated datasets. (2) Motivated by the nonlinear nature of soft-biometric analysis problems, we102

utilize KPCA, KLDA, and SKPCA for dimension reduction on four types of appearance-based extracted103

features (BIF, HOG, LBP, and AAM) for the gender classification task. Moreover, the classification104

performance is compared systematically on parameter optimization. (3) For applications to practical105

large-scale systems, we propose an additional parallel computational framework that can decrease106

runtime while maintaining similar classification rates.107

The remainder of the paper is structured as follows. In Section 3, we review the theory of KPCA,108

SKPCA, and KLDA. In Section 4, we conduct simulation studies to visualize projections. We propose109

our machine learning methods for gender classification on Morph-II in Section 5. The comparative110

performance of KPCA, SKPCA, and KLDA on Morph-II is presented and discussed in Section 6. The111

performance of these DR methods is further compared in Section 7 through application to the FG-NET112

dataset. The computational framework for large-scale practical systems is proposed in Section 8 and113

investigated on Morph-II. Finally, we conclude and offer future directions of research in Section 9.114

3. Kernel-Based Dimension Reduction Methods115

The nonlinearity in a classification problem can often be addressed by kernel-based DR methods,116

with the appropriate choice of kernels. The driving reasons are the nonlinearity of chosen kernels,117

flexibility of tuning parameter selection, and most importantly, the kernel tricks. Mercer’s theorem118

guarantees that a symmetric positive-definite function can be written as the sum of a convergent119

sequence of product functions, which potentially project the data into infinite-dimensional space [63].120

Thus, it is feasible to separate the data in the new space. On the other hand, Representer Theorem121

shows that the solution for certain kernel methods lies in the finite-dimensional span of the training122

data [63,64]. This is very helpful, since we do not need to compute the coordinates of the projected123

data in the infinite-dimensional space, but only the inner products between all pairs of data in the124

feature space.125

3.1. Notations126

With the goal of emphasizing the connections between KPCA, SKPCA, and KLDA, we define the127

following notations for classification problems.128

Let X be the feature space, a non-empty subset in Rp with p as the number of covariates for
each subject. Let Y be the space for the response variable, a subset in R. Let {(x1, y1), · · · , (xn, yn)} ⊂
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X × Y be a series of n independent observations following a joint probability measure PX ,Y . Let
Y = [y1, y2, · · · , yn]T denote the outcomes of the response variable. Let X be an n× p feature matrix,
with xT

i as the i-th row for i = 1, · · · , n , and x(l) ∈ Rn for l = 1, · · · , p as its l-th column. Thus, the X
matrix can be written as:

X =
[

x1, x2, · · · , xn

]T
=
[

x(1), x(2), · · · , x(p)
]

.

Without loss of generality, we may assume that each column of the X matrix is normalized, such that129

the mean of x(l) is 0 and standard deviation is 1, for l = 1, · · · , p.130

Let Σ be the sample covariance matrix of X. We then have

Σ
p×p

=
1

n− 1
XTX =

1
n− 1

n

∑
i=1

xixi
T . (1)

Let F be a reproducing kernel Hilbert space on X from a kernel function k(·, ·), which is a Mercer131

kernel (symmetric and positive-definite), and G be a reproducing kernel Hilbert space on Y from a132

kernel function l(·, ·).133

For the kernel k : X ×X → R, its associated space F may be infinite-dimensional, but with some
additional conditions, the minimizer of a regularized risk function lies in the finite span of the training
observations [63]. Additionally, it has been shown [63] that there exists a function

φ : X → F (2)

such that for all x, x′ ∈ X ,
k(x, x′) =< φ(x), φ(x′) >, (3)

where < · > is the dot product. Let K be a matrix such that its ij-th element is k(xi, xj). We then have

K = {k(xi, xj)}ij = {< φ(xi), φ(xj) >}ij = Φ(X)Φ(X)T , (4)

where Φ(X) = [φ(x1), φ(x2), · · · , φ(xn)]T . Here, the kernel matrix K is the Gram matrix of the φ(xi)’s.134

3.2. Principal Component Analysis and Kernel Principal Component Analysis135

In standard PCA, we seek an orthogonal transformation matrix A satisfying

T
n×d

= X
n×p

A
p×d

, (5)

where T = [t1, t2, · · · , td] for some d ≤ p, such that each column vector ti successively inherits maximal
proportion of variance from the column vectors x(l)’s, while ensuring the projection directions are
perpendicular. The solutions can be expressed as the eigenvalue problem

Σai = λiai, (6)

where ai is the i-th column of A, for i = 1, . . . , d.136

Following the work of [65], PCA can be extended to KPCA by first choosing a Mercer kernel k,137

with which xi is transformed to φ(xi). This maps the features in X to Φ(X). Assume that ∑n
i=1 φ(xi) is138

a vector with 0 in each entry. With the Gram matrix K = Φ(X)Φ(X)T as defined in (4) and through139

the kernel trick from (3), we have the eigenvalue problem140

Ka∗i = λ∗i a∗i , (7)
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where d is the desired dimension and a∗i , · · · , a∗d are the eigenvectors of K, with associated eigenvalues
λ∗1 ≥ λ∗2 ≥ · · · ≥ λ∗d. Hence, the advantage of the kernel-based approach is to calculate the Gram
matrix K without an explicit expression for φ. Without the centralization assumption on φ, the K matrix
in (7) can be replaced by

K∗ = HnKHn, (8)

where d is the desired dimension, Hn = In − 1
n 1n, In is an identity matrix with dimension n× n, and141

1n is a matrix of 1’s with dimension n× n.142

We note that Hn is idempotent, since it is a square matrix satisfying Hn = Hn Hn. For any square143

matrix S with dimension n× n, the average of each column of the matrix HnS is 0, as is the average of144

each row of the matrix SHn. Thus, the K∗ matrix is the "centralized" version of the original K matrix.145

3.3. Supervised Kernel Principal Component Analysis146

PCA and KPCA are unsupervised methods, since they do not consider the response variable,147

only considering directions of maximum variability in the covariates. If the goal is classification, this148

may not be ideal, since the principal components may be unrelated to the class difference. SKPCA149

is a supervised generalization of KPCA, which aims to find the principal components with maximal150

dependence on the response variable. Drawing from [34] and [35], we formulate SKPCA as follows.151

In SKPCA, class information is incorporated by maximizing the Hilbert Schmidt independence
criterion (HSIC) [66]. With the aforementioned reproducing kernel Hilbert spaces F on X and G on Y
and related kernel functions k(·, ·) and l(·, ·) respectively, the HSIC can be expressed as

HSIC(PX ,Y ,F ,G) = Ex,x′ ,y,y′ [k(x, x′)l(y, y′)] + Ex,x′ [k(x, x′)]Ey,y′ [l(y, y′)]

− 2Ex,y
(
Ex′ [k(x, x′)]Ey′ [l(y, y′)]

)
,

(9)

where Ex,x′ ,y,y′ represents the expectation on independent pairs of (x, y) and (x′, y′) (with respect to152

PX ,Y ) and Ex,x′ and alike are the expectations based on various marginal distributions from PX ,Y .153

With the results from [66], an empirical estimator of (9) is

HSIC(X, Y,F ,G) = 1
(n− 1)2 tr(KHnLHn), (10)

where K and Hn are defined as before for KPCA and L = {1(yi = yj)}ij is a link matrix with dimension154

n× n, where 1(·) is an indicator function with value 1 if the event is true and 0 otherwise.155

Similarly as for KPCA, K and L can be adjusted to satisfy the centralization assumption. As
discussed previously, Hn is an idempotent matrix. Therefore, following from (10),

HSIC∗(X, Y,F ,G) = 1
(n− 1)2 tr(KHnHnLHn Hn)

=
1

(n− 1)2 tr(HnKHnHnLHn)

=
1

(n− 1)2 tr(K∗L∗), (11)

where K∗ and L∗ are the "centralized" versions of the K and L matrices respectively.156

On another note, in the binary gender classification problem, rank(L) = 2 and rank(KHnLKHn) ≤
2 [35]. Therefore, we modify the link matrix according to [35] by

L = {1(yi = yj)× k(xi, xj)}ij. (12)
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It can be shown that maximization of (10) is equivalent to solving the generalized eigenvalue
problem

Avi = λiKvi, (13)

where A = KHnLHnK and each vi is an eigenvector with related eigenvalue λi for i = 1, · · · , d, where157

d is the desired dimension [35]. Therefore, the main advantage of the link matrix in (12) becomes158

apparent: the rank of KHnLKHn may increase, permitting more eigenvalues to be computed.159

3.4. Linear Discriminant Analysis and Kernel Linear Discriminant Analysis160

Given a dataset with finite classes, LDA aims to find the best set of features to discriminate161

among the classes. We first review standard LDA, then generalize to KLDA. We note that sometimes162

parametric assumptions for LDA are made, such as that observations from each class are normally163

distributed with common covariance. Here, we make no such assumptions. Suppose that each164

observation xi for i = 1, · · · , n belongs to exactly one of C classes. Define the following feature vectors:165

x̄ = 1
n ∑n

i=1 xi as the overall mean and x̄c =
1
nc

∑n
i=1 xi1(xi ∈ class c) as the mean of the c-th class with166

nc the size of the c-th class in the sample, for c = 1, · · · , C.167

In standard LDA, we seek to maximize the objective function

J(v) =
vTSBv
vTSWv

, (14)

where v is a p x 1 vector, SB is the between-class scatter matrix, and SW is the within-class scatter
matrix defined by

SB
p×p

= ∑
c

nc(x̄c − x̄)(x̄c − x̄)T and

SW
p×p

= ∑
c

∑
i∈c

(xi − x̄c)(xi − x̄c)
T .

(15)

Hence, maximizing J(v) involves finding some rotation of the scatter matrices such that the "distance"168

between the groups is maximized relative to the variations within each group.169

Maximization of J(v) in (14) is equivalent to solving the generalized eigenvalue problem

SBvi = λiSWvi, (16)

where each vi is an eigenvector with corresponding eigenvalue λi, for i = 1, · · · , d, where d is the170

desired dimension.171

LDA is generalized to KLDA using the kernel representation from (3). Analogously to LDA above,
we seek a solution v∗ that will result in the maximization of the objective function

J(v) =
vTS∗Bv
vTS∗wv

, (17)

where now v ∈ F and S∗B and S∗W are the between-class and within-class scatter matrices in F defined
by

mφ =
1
n

n

∑
i=1

φ(xi),

mφ
c =

1
nc

n

∑
i=1

φ(xi)1(xi ∈ class c),

S∗B = ∑
c

nc(m
φ
c −mφ)(mφ

c −mφ)
T

, and

S∗W = ∑
c

∑
i∈c

(φ(xi)−mφ
c )(φ(xi)−mφ

c )
T .

(18)
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The above expressions involve knowledge of φ, which is often not available. It can be shown that
equation (17) is equivalent to

J(u) =
uT Mu
uT Nu

, (19)

where

Mc = (Mcj)j =

(
1
nc

n

∑
h=1

k(xj, xh)1(xh ∈ class c)

)
j

,

M̄ = (M̄j)j =

(
1
n

n

∑
h=1

k(xj, xh)

)
j

,

M = ∑
c

nc(Mc − M̄)(Mc − M̄)T ,

Kc = K× outer(X, Xc),

N = ∑
c

KcHnc KT
c ,

(20)

Xc is a matrix of dimension nc × p with rows being features from the c-th class, and outer(X, Xc) is172

an n× nc matrix with its ij-th element as 1(xi is the j-th observation in class c). A full discussion of173

KLDA can be found in [17].174

Maximization of J(u) in equation (19) is equivalent to solving the generalized eigenvalue problem

Mui = λi Nui, (21)

where each ui is an eigenvector with associated eigenvalue λi, for i = 1, · · · , d with d as the desired175

dimension.176

Comparing the generalized eigenvalue problems in (16) and (21), the structures of matrices SB177

and M are similar, since both "measure" the variation between different classes.178

Let Wc = [wc,1, · · · , wc,nc ] = Kc Hnc , a matrix of dimension n × nc. Due to the centralization
function of Hnc , Wc has row-sum equal to zero for every row. Besides, Kc Hnc(KcHnc)

T = WcWT
c =

∑nc
i=1 wc,iwT

c,i. For the matrix N, due to the idempotent property of Hnc ,

N = ∑
c

Kc Hnc Hnc KT
c = ∑

c

nc

∑
i=1

wc,iwT
c,i. (22)

Thus, the matrix N has an identical structure to the SW and S∗W matrices, which "measure" the overall179

variation within groups.180

4. Visualization on Simulation Studies181

To visualize and improve understanding of the manifold learning methods KPCA, SKPCA, and
KLDA, we apply them in three simulation studies. For comparison, the linear techniques PCA and
LDA are also considered. Each dataset contains nonlinear patterns, and the goal is to transform the
data to be linearly separable. For this reason, the radial basis function (RBF)

k(xi, xj) = e−δ||xi−xj ||22 (23)

is chosen as a kernel for each pair of observed vectors xi, xj. For each DR method, a range of values for182

the tuning parameter δ are tested and selected to visually separate the classes. A full discussion of183

the RBF kernel, among others, can be found in [67]. Figures 1, 2, and 3 compare the original data to184

2-dimensional projections from each DR method. In each plot, color corresponds to the true class to185

which an observation belongs.186
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(a) Original Data (b) KLDA Projections in 2D (c) KPCA Projections in 2D

(d) SKPCA Projections in 2D (e) PCA Projections in 2D (f) LDA Projections in 2D

Figure 1. Wine Chocolate Simulation Study.

In the first simulation study, the original data are plotted in 3D in Figure 1(a); the green sphere187

is embedded within the magenta group, necessitating nonlinear manifold learning. The KLDA188

projections in (b) are linearly separable with very good variation between the classes and a fair amount189

of variation within the classes. KPCA and SKPCA projections in (c) and (d) are at least approximately190

linearly separable, as it is not clear whether there is a linear boundary that perfectly separates the191

two classes. In (e), PCA fails to linearly separate the groups, rotating the wine chocolate in 2D. The192

maximum dimension LDA can retain is p− 1; with 2 classes, the projections must be plotted on a 1D193

number line, given in (f). Points from the two classes overlap considerably in plots (e) and (f).194

(a) Original Data (b) KLDA Projections in 2D (c) KPCA Projections in 2D

(d) SKPCA Projections in 2D (e) PCA Projections in 2D (f) LDA Projections in 2D

Figure 2. Apple Tart Simulation Study.
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In the second simulation study, the original data in Figure 2(a) follow a nonlinear pattern. In195

(b), KLDA produces groups which are linearly separable. The KPCA projections are approximately196

linearly separable in (c); however, there is some overlap between groups, especially the green and pink197

groups in the third quadrant. In (d), SKPCA produces almost linearly separable groups. In plots (e)198

and (f), PCA and LDA simply rotate the original data in 2D space, as expected.199

(a) Original Data (b) KLDA Projections in 2D (c) KPCA Projections in 2D

(d) SKPCA Projections in 2D (e) PCA Projections in 2D (f) LDA Projections in 2D

Figure 3. Swiss Roll Simulation Study.

For the third simulation study, the original data in Figure 3(a) are in 3D and follow a swirling,200

nonlinear pattern. In (b), KLDA yields favorable results; the groups are well-separated linearly. KPCA201

and SKPCA in (c) and (d) also produce good results, although in (c) more separation between the202

purple and bright green groups would be ideal. In (e) and (f), respectively, PCA and LDA merely203

rotate the original data projected in 2D space; there is no linear separation between the magenta and204

purple groups, nor between the two green groups.205

For all three simulation studies, KLDA, KPCA, and SKPCA are effective to transform the data206

into linearly separable groups. In all cases, the projected data become approximately linearly separable207

after applying KLDA, KPCA, or SKPCA. In general, KLDA and SKPCA perform the best here. Their208

success over KPCA is expected, since KLDA and SKPCA are supervised techniques. On the other hand,209

results indicate that KPCA and SKPCA are more sensitive than KLDA to different choices of tuning210

parameters. Hence, SKPCA and KPCA may perform better for alternative choices of parameters. In211

all our studies, the nonlinear techniques outperform linear PCA and LDA. These preliminary studies212

suggest the radial kernel is appropriate for our face analysis experiments.213

5. Kernel-based Dimension Reduction Optimization and Classification on Morph-II214

Motivated by the nonlinear nature of facial demographic analysis, we propose and implement a novel215

machine learning process for the Morph-II dataset. We consider the kernel-based DR methods KPCA,216

SKPCA, and KLDA on three types of appearance-based extracted features (LBP, BIF, and HOG) for the217

gender classification task. We illustrate parameter optimization and compare the performance of these218

methods on Morph-II.219
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5.1. Longitudinal Face Database220

MORPH [68] is one of the most popular face databases available to the public, especially for221

age estimation, race classification, and gender classification. Multiple versions of MORPH have been222

released, and the version adopted in this work is the 2008 MORPH-II non-commercial release (referred223

to as Morph-II in this paper). Morph-II includes over 55,000 mugshots with longitudinal spans and224

metadata such as date of birth, race, gender, and age.225

In addition to its size, Morph-II presents challenges because of disproportionate race and gender226

ratios. About 84.6% of images are of males, while only about 15.4% of images are of females.227

Imbalanced classes are known to negatively affect certain classification algorithms [69]. Moreover,228

Morph-II is skewed in terms of race, with approximately 77.2% of images picturing black subjects.229

Guo et al. found that age, gender, and race interact for demographic analysis tasks including gender230

classification, race classification, and age prediction [48,60,70], so both race and gender imbalance in231

Morph-II can hamper gender classification.232

5.2. Subsetting Scheme233

To overcome the uneven race and gender distributions in Morph-II, Guo et al. proposed a234

subsetting scheme [48]. Since then, many studies on Morph-II have adopted such an evaluation235

protocol. Based on discussions in Guo et al. [48], a new automatic subsetting scheme is proposed in [71],236

aiming to automatically ensure independent training and testing sets. Additionally, inconsistencies in237

age, gender, and race in Morph-II have been identified and corrected in [71]. After following the steps238

to clean MORPH-II outlined in [71], we apply the automatic subsetting scheme, summarized in Figure239

4 and described below.240

Let W be the Whole Morph-II dataset, S the selected training/testing set, and R the remaining set.241

We further divide S into even subsets S1 and S2. Separately within each subset S1 and S2, we fix the242

ratios of white (W) to black (B) images as 1:1 and male (M) to female (F) images as 3:1. Further, S1 and243

S2 have been selected such that the age distributions within each set are similar (details shown in [71]).244

The gender and race summaries for the subsetting scheme are shown in Table 2. Most importantly,245

the sets R, S1, and S2 are independent; no sets share images from the same subject. We use S as an246

alternating training and testing set. First, we train on S1 and test on S2 ∪ R, then we train on S2 and247

test on S1 ∪ R. The final classification accuracy is obtained by averaging the classification accuracies248

from the alternations.249

Figure 4. Flowchart representing our subsetting scheme [71] for MORPH-II, which improves the one
from [48].
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Table 2. Number of Images in Subsets by Race and Gender

WF BF WM BM dF dM Overall F M
S1 1,285 1,285 3855 3,855 0 0 10,280 2570 7,710
S2 1,285 1,285 3,855 3,855 0 0 10,280 2,570 7,710
R 0 3,150 220 28,980 144 1,850 34,344 3,294 31,050
Overall 2,570 5,720 7,930 36,690 144 1,850 54,904 8,434 46,470

Race-gender combinations are abbreviated, e.g., BF represents the black female group. Abbreviations
dF and dM represent those who are neither black nor white in race.

5.3. Facial Feature Extraction250

In computer vision, image preprocessing is often an essential first step to reduce unnecessary251

variation, decrease pixel dimension, and simplify pixel encoding. Despite the standard format of police252

photography in mugshots, Morph-II photographs vary in head-tilt, camera distance, occlusion, and253

illumination. We address this variation as follows. Images are first converted to grayscale. Next, faces254

are automatically detected, eliminating the background and hair, so that no external cues can be used255

to classify gender. The resulting images are centered and scaled with respect to the center of the irises.256

Finally, the images are cropped to be 70 pixels tall by 60 pixels wide. Full methodological details are257

given in [72] and align with standard preprocessing protocols from face analysis.258

After preprocessing, pixel-related features are extracted from the face images in Morph-II.259

As discussed previously, there are numerous approaches for feature extraction. In this study on260

Morph-II, we incorporate domain expertise by choosing three well-established appearance-based261

models from image analysis: local texture techniques such as local binary patterns (LBP) [55–262

58], biologically-inspired features (BIF) [60,61], and histogram of oriented gradients (HOG) [60].263

Additionally, these model-based approaches provide "robust interpretation . . . by constraining264

solutions to be face-like" [73]. Detailed documentation of our feature extraction process can be265

found in [72,74].266

Table 3. Parameter Summary

Features
LBP s = 10, 12, 14, 16, 18, 20

r = 1, 2, 3
HOG s = 4, 6, 8, 10, 12, 14

o = 4, 6, 8
BIF s=7− 37, 15− 29

γ = 0.1, 0.2, . . . , 1.0

Dimension Reduction
KPCA δ = ±0.1,±1,±5,±10,±100

SKPCA δ =-0.0001,-0.001
η = 0.001, 0.01, 0.1, 1

KLDA δ = ±0.01,±0.1,±1,±5,±10,±100
Classifier Linear SVM c = 10−8, . . . , 10−1, 1, 10, . . . , 108

5.4. Kernel-Based Dimension Reduction Optimization267

Tuning parameter selection is essential for kernel-based methods in order to achieve good results.268

Within the framework of feature extraction, dimension reduction, and the classification model, there269

are many combinations of parameters to be considered. The main parameters and tested values are270

summarized in Table 3 and discussed as follows. LBP features have two main parameters: block size s271

and window radius r. For HOG, the two main parameters are block size s and number of orientations272

o. For BIF, we consider the block size s and the parameter γ, which represents the spatial aspect ratio;273

there is also a choice of pooling operation, which we select here as the standard deviation operation.274

For each dimension reduction method, the radial kernel

k(xi, xj) = eδ||xi−xj ||22 (24)
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is used for each pair of observation vectors xi, xj, based on the results from our simulation studies.
In the kernel, we must select the tuning parameter δ, which scales the extent of similarity between
pairs of vectors. This parameter must be chosen with particular care, since a poor choice can result
in transformed features with little to no variability. Empirically, we observed that SKPCA was more
sensitive than KLDA and KPCA to the choice of δ; values of δ at or above 1 resulted in a rank deficient
matrix and failure to compute all requested eigenvalues. For SKPCA, we consider an additional scaling
parameter η in the modified link function proposed by Wang et al. [35]:

l(yi, yj) = eηδ||xi−xj ||22 , (25)

for all observed responses yi, yj in the same class. The scale parameter η enables the weighing of275

dependence between the covariates and response.276

Finally, we choose a linear SVM to classify gender based on the dimension-reduced, transformed277

features. The motivation for this classifier is discussed in the next section. The main parameter for278

linear SVM is the cost c, which measures the extent to which misclassification in training will be279

permitted. We consider values of c from 10−8 to 108.280

Table 4. Tuning Results on a Subset of MORPH-II

Method Feature Parameters Accuracy

KPCA
BIF s = 7− 37, γ = 0.1 δ = −1, c = 10 0.882
BIF s = 7− 37, γ = 0.6 δ = −1, c = 10 0.882
BIF s = 15− 29, γ = 0.1 δ = −1, c = 100 0.882
BIF s = 15− 29, γ = 0.6 δ = −1, c = 10 0.882
HOG s = 4, o = 4 δ = −100, c = 0.1 0.917
HOG s = 4, o = 4 δ = −5, c = 0.001 0.919
HOG s = 4, o = 4 δ = −1, c = 0.001 0.917
HOG s = 4, o = 4 δ = −0.1, c = 0.1 0.917
LBP s = 10, r = 1 δ = −100, c = 0.1 0.912
LBP s = 10, r = 1 δ = −5, c = 0.1 0.912
LBP s = 10, r = 1 δ = −1, c = 0.001 0.912
LBP s = 10, r = 1 δ = −0.1, c = 0.1 0.912

SKPCA
BIF s = 7− 37, γ = 0.2 δ = 0.0001, η = 0.1, c = 1 0.899
BIF s = 7− 37, γ = 0.8 δ = 0.0001, η = 0.1, c = 1 0.899
BIF s = 15− 29, γ = 0.5 δ = 0.0001, η = 0.1, c = 1 0.899
HOG s = 6, o = 6 δ = 0.0001, η = 0.001, c = 1 0.931
HOG s = 6, o = 6 δ = 0.0001, η = 0.01, c = 0.001 0.931
HOG s = 6, o = 6 δ = 0.0001, η = 0.1, c = 0.001 0.931
LBP s = 14, r = 2 δ = 0.0001, η = 0.001, c = 1 0.937
LBP s = 14, r = 2 δ = 0.0001, η = 0.01, c = 1 0.937
LBP s = 14, r = 2 δ = 0.0001, η = 0.1, c = 1 0.938
LBP s = 14, r = 2 δ = 0.0001, η = 1, c = 1 0.939

KLDA
BIF s = 7− 37, γ = 0.3 δ = −1, c = 10 0.875
BIF s = 7− 37, γ = 0.6 δ = −1, c = 100 0.875
BIF s = 15− 29, γ = 0.2 δ = −1, c = 10 0.875
BIF s = 15− 29, γ = 0.8 δ = −1, c = 100 0.875
HOG s = 4, o = 4 δ = 1, c = 1 0.917
HOG s = 4, o = 6 δ = 1, c = 1 0.917
HOG s = 12, o = 8 δ = −1, c = 100 0.904
LBP s = 10, r = 1 δ = −0.1, c = 1 0.906
LBP s = 10, r = 1 δ = 1, c = 1 0.908
LBP s = 14, r = 1 δ = 0.1, c = 10 0.898

We tune on small subsets of Morph-II to reduce runtime, memory consumption, and risk of281

over-fitting. 1000 images from S1 and 1000 images from S2 are randomly selected. The standard282

method of grid search is followed for tuning on these subsets. For each combination of parameters,283

a model is trained on the subset from S1 and then tested on the subset from S2. For each dimension284
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reduction method paired with each feature type (BIF, HOG, and LBP), the best three or four accuracy285

rates from tuning are obtained. (Except in the case of ties, we choose only the top three accuracy286

rates.) The tuning results for these top-performing parameters are given in Table 4. The parameters287

corresponding to these maximum accuracy rates are applied to the full dataset through the previously288

discussed evaluation protocol. Although this protocol involves testing on images from S1 and S2, any289

overlap of images is minor (in each testing set, less than 2.3% of images have been used in tuning) and290

has little impact on the reported accuracy (discussed in Section 6). Regardless, the tuning parameters291

are selected through the same procedure, so the classification performances can be fairly compared292

among all considered DR methods.293

Table 5. Gender Classification Results on MORPH-II

Method Feature Parameters Acc(1) TPR(2) TNR(3) Mem(4) Time(5)

KPCA
BIF s = 7− 37, γ = 0.1 δ = −1, c = 10 0.9296 0.9473 0.8127 34.04 42.26
BIF s = 7− 37, γ = 0.6 δ = −1, c = 10 0.9297 0.9455 0.8112 34.68 36.94
BIF s = 15− 29, γ = 0.1 δ = −1, c = 100 0.9071 0.9377 0.7050 31.74 33.83
BIF s = 15− 29, γ = 0.6 δ = −1, c = 10 0.9096 0.9374 0.7266 31.80 35.97
HOG s = 4, o = 4 δ = −100, c = 0.1 0.9391 0.9726 0.7172 34.00 31.54
HOG s = 4, o = 4 δ = −5, c = 0.001 0.9391 0.9727 0.7170 34.00 30.86
HOG s = 4, o = 4 δ = −1, c = 0.001 0.9391 0.9724 0.7192 34.00 32.17
HOG s = 4, o = 4 δ = −0.1, c = 0.1 0.9364 0.9626 0.7634 34.35 31.41
LBP s = 10, r = 1 δ = −100, c = 0.1 0.9391 0.9726 0.7172 34.00 31.54
LBP s = 10, r = 1 δ = −5, c = 0.1 0.9391 0.9726 0.7172 34.00 30.86
LBP s = 10, r = 1 δ = −1, c = 0.001 0.9391 0.9724 0.7192 34.00 32.17
LBP s = 10, r = 1 δ = −0.1, c = 0.1 0.9364 0.9626 0.7634 34.35 31.41

SKPCA
BIF s = 7− 37, γ = 0.2 δ = 0.0001, η = 0.1, c = 1 0.9507 0.9616 0.8781 35.48 42.04
BIF s = 7− 37, γ = 0.8 δ = 0.0001, η = 0.1, c = 1 0.9532 0.9639 0.8823 33.04 38.34
BIF s = 15− 29, γ = 0.5 δ = 0.0001, η = 0.1, c = 1 0.9260 0.9477 0.7827 20.03 34.58
HOG s = 6, o = 6 δ = 0.0001, η = 0.001, c = 1 0.9467 0.9645 0.8292 36.69 37.39
HOG s = 6, o = 6 δ = 0.0001, η = 0.01, c = 0.001 0.9489 0.9786 0.7528 38.28 53.96
HOG s = 6, o = 6 δ = 0.0001, η = 0.1, c = 0.001 0.9488 0.9786 0.7517 39.83 60.55
LBP s = 14, r = 2 δ = 0.0001, η = 0.001, c = 1 0.9585 0.9727 0.8641 28.68 25.33
LBP s = 14, r = 2 δ = 0.0001, η = 0.01, c = 1 0.9585 0.9764 0.8642 23.22 38.42
LBP s = 14, r = 2 δ = 0.0001, η = .1, c = 1 0.9585 0.9730 0.8640 29.87 28.00
LBP s = 14, r = 2 δ = 0.0001, η = 1, c = 1 0.9585 0.9727 0.8640 27.92 22.83

KLDA
BIF s = 7− 37, γ = 0.3 δ = −1, c = 10 0.9415 0.9539 0.8594 24.89 34.50
BIF s = 7− 37, γ = 0.6 δ = −1, c = 100 0.9426 0.9558 0.8858 24.74 35.46
BIF s = 15− 29, γ = 0.2 δ = −1, c = 10 0.9131 0.9374 0.7532 22.80 26.78
BIF s = 15− 29, γ = 0.8 δ = −1, c = 100 0.9205 0.9421 0.7783 22.83 33.88
HOG s = 4, o = 4 δ = 1, c = 1 0.9369 0.9517 0.8392 36.52 81.71
HOG s = 4, o = 6 δ = 1, c = 1 0.9398 0.9545 0.8425 52.48 148.24
HOG s = 12, o = 8 δ = −1, c = 100 0.9175 0.9421 0.7542 21.18 21.57
LBP s = 10, r = 1 δ = −0.1, c = 1 0.9418 0.9578 0.8428 24.58 37.17
LBP s = 10, r = 1 δ = 1, c = 1 0.9417 0.9558 0.8486 24.70 36.45
LBP s = 14, r = 1 δ = 0.1, c = 10 0.9392 0.9543 0.8397 20.77 31.12

(1) Acc represents mean accuracy.
(2) TPR represents mean true positive rate (recall/sensitivity): the proportion of male faces correctly classified.
(3) TNR represents mean true negative rate (specificity): the proportion of female faces correctly classified.
(4) Mem represents mean memory in gigabytes.
(5) Time represents mean runtime in hours for training and testing.

5.5. Gender Classification294

For the classification part of the modeling, linear SVM is adopted. Many face analysis studies295

have involved SVM, as summarized in [75]. Briefly, SVM identifies a separating hyperplane with296

maximal margin between the classes. Several popular kernels for SVM include linear, polynomial,297

and RBF [67]. We select the linear kernel, because directions of variability in the data are expected298

to be linear after the nonlinear transformations of KPCA, SKPCA, or KLDA. Indeed, Schölkopf et al.299

observed this to be true for KPCA in their landmark study [65]. The linear kernel for SVM also reduces300

computational cost, compared to nonlinear kernels.301
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With the parameters in Table 4 that are selected from tuning on subsets, we implement dimension302

reduction and classification on the full Morph-II dataset, following the subsetting scheme discussed303

in Section 5.2. The challenges of the large size of Morph-II, the high dimensionality of the features,304

and the computational complexity of these dimension reduction methods necessitate the use of305

high-performance computing (HPC). For example, the kernel matrix for each dimension reduction306

method is 55134× 55134, requiring approximately 23 gigabytes of storage. Thus, we implement the307

process on the HiPerGator 2.0 supercomputing cluster at the University of Florida. The code is written308

in R. The R package rARPACK is used to optimize the solving of eigenvalue problems [76], and the309

e1071 package is utilized for training and testing the SVM model [77].310

6. Experiment Results311

The kernel-based DR methods KPCA, SKPCA, and KLDA are applied to three facial feature312

extraction methods: BIF, HOG, and LBP. The DR methods transform the feature data, then reduce the313

dimension. In all cases, a dimension of 100 is retained, substantially lower than the dimension of the314

original feature space. The dimensionality of 100 is selected as a trade-off between computation time315

and classification accuracy based on our preliminary studies. The transformed and dimension-reduced316

data serve as input for the linear SVM, which classifies each image subject as male or female.317

Additionally, these predicted gender classes are mapped to probabilities through a sigmoid function,318

following [78]. This process is applied to each alternation of the evaluation protocol: 1) train on S1,319

test on S2 ∪ R and 2) train on S2, test on S1 ∪ R. The classification results are averaged over these320

two testing sets. The mean classification accuracy over the testing images is chosen as the evaluation321

criterion for our methods on Morph-II, as it is the usual performance metric for gender classification322

[60], especially in similar studies [49,51,52,79].323

These mean classification results from Morph-II are shown in Table 5. In addition to the accuracy,324

the true positive rate (also known as sensitivity or recall) and true negative rate (also called specificity)325

are given. For this study, we define the true positive rate (TPR) as the proportion of male faces correctly326

classified, while the true negative rate (TNR) as the proportion of female faces correctly classified.327

The memory and runtime are also listed in Table 5. The runtime is the total time for training and328

testing on HPC, i.e., the average of time1 (train on S1, test on S2 ∪ R) and time2 (train on S2, test on329

S1 ∪ R). As mentioned in Section 5.4, there is a small overlap between the tuning and testing sets that330

could contribute to over-fitting. We have assessed the potential impact of over-fitting on our reported331

accuracy rates and found it to be very small: it is estimated to be (at most) between 0.09% and 0.2%332

and to monotonically decrease as reported accuracy rates increase.333
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Morph−II Testing ROC Curve for Gender Classification
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Method AUC
SKPCA − LBP 0.9853
SKPCA − BIF 0.9834
KLDA − BIF 0.9763

SKPCA − HOG 0.9745
KLDA − LBP 0.9732
KLDA − HOG 0.972
KPCA − LBP 0.9664
KPCA − BIF 0.9621

KPCA − HOG 0.962

Figure 5. Receiver operating characteristic (ROC) curve and area under the curve (AUC) are compared
by method for gender classification on Morph-II. Each color corresponds to a DR method paired
with feature type. For each probability threshold, the true and false positive rates are reported as the
averages from the testing sets of the alternating evaluation protocol.

The classification performance is further visualized in Figure 5 through receiver operating334

characteristic (ROC) curves for the nine combinations of DR method and feature extraction type. For335

each combination, its displayed curve corresponds to the "best" results from Table 5 (the combination336

of parameters reaching maximum mean classification accuracy or maximum mean true positive rate in337

the event of ties). For each alternation of the evaluation protocol, the true and false positive rates in338

testing are calculated for each probability threshold. To construct the ROC curves, each of the resulting339

rates for each threshold is averaged over the testing sets.340

Table 5 shows that for the feature BIF, SKPCA and KLDA outperform KPCA. For the feature HOG,341

SKPCA achieves higher accuracy than both KPCA and KLDA, while the latter two techniques perform342

very similarly. Last, for the feature LBP, SKPCA produces better classification accuracy than KPCA and343

KLDA. In summary, our experiment’s results indicate that SKPCA outperforms KLDA consistently,344

while KLDA outperforms KPCA for all three features BIF, LBP, and HOG. On the other hand, for345

KPCA, the features HOG and LBP produce approximately the same accuracies, outperforming BIF.346

For SKPCA, LBP achieves slightly better results than BIF, while LBP and BIF both outperform HOG.347

Finally, for KLDA, BIF reaches slightly higher accuracy than LBP, while BIF and LBP both exceed HOG.348

In most cases, the accuracy (in Table 5) and AUC (in Figure 5) metrics agree on the best methods.349

An exception is that SKPCA with the HOG features achieves slightly higher accuracy (94.89%) than350

KLDA with the BIF features (94.18%), but SKPCA with HOG has lower AUC than KLDA with BIF.351

The other exception is that KPCA with the HOG features has the lowest AUC of the nine methods, but352

its accuracy is higher than KPCA with the BIF features. In summary, the accuracy and AUC results353

imply that SKPCA generally performs best for gender classification on Morph-II, while KLDA tends to354

outperform KPCA. Meanwhile, the LBP and BIF features often yield better classification performance,355

with less memory usage, than the HOG features.356

It is interesting that, overall, LBP achieves even slightly better performance than BIF for the357

dimension reduction method SKPCA on the task of gender classification, since BIF is popular in358

demographic analysis such as age estimation, gender classification, and race classification [48,49,60,359

70,79]. Another interesting fact is displayed by the results of the true positive and negative rates in360

Table 5: males have a higher probability of correct identification than females, with the biggest margin361
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exceeding 20%. Our finding is consistent with [61]: females are more challenging to correctly classify362

than males, both for automatic approaches and human perception. Similarly, for race classification on363

Morph-II, Guo and Mu found in [70] that training a model on female faces (and testing on male faces)364

contributed to significantly more errors on average than training on male faces (and testing on female365

faces), even when controlling for differences in the training sample sizes. Our results also indicate that,366

overall, HOG and LBP outperform BIF for males, while BIF works consistently better than LBP and367

HOG for females.368

Next, in Table 6 we compare our results to studies using similar methods on Morph-II, as well as369

recent state-of-the-art works with deep learning on MORPH-II. With the exception of [61], all studies’370

results in the table are mean testing classification accuracy from an alternating evaluation protocol371

based on Guo et al [48]. Hence, our results can be directly compared to these studies. With LBP372

features, SKPCA, and a linear support vector machine (SVM), our gender classification accuracies373

approximate 96%, competitive with benchmark results. Interestingly, several reported accuracy rates374

from human observers of gender range from 96% [42] to 96.9% [61]. The similarity in recognition rates375

between our methods and human observers can further validate the success of our approach.376

Table 6. Comparison Results for Gender Classification on MORPH-II

Method Accuracy Reference Year
BIF+OLPP 98% [49] 2011
BIF+PLS 97.34% [49] 2011
BIF+KPLS 98.2% [49] 2011
BIF+CCA 95.2% [79] 2014
BIF+KCCA 98.4% [79] 2014
BIF+rCCA 97.6% [79] 2014
Multi-scale CNN 97.9% [52] 2014
Ranking CNN 97.9% [51] 2015
BIF+Hierarchical-SVM 97.6% [61] 2015
Human Estimators 96.9% [61] 2015
LBP+SKPCA+L-SVM 95.85% This work 2019

7. Kernel-based Dimension Reduction Optimization and Classification on FG-NET377

For further comparison between KPCA, SKPCA, and KLDA, we apply a modification of our378

approach from Section 5 to a smaller face dataset, the face and gesture recognition network (FG-NET).379

FG-NET is a popular, publicly available database used for age estimation, gender classification, face380

recognition, and other demographic analysis tasks [80]. It contains 1002 images from 82 subjects: 47381

males and 35 females with ages varying from 0 to 69 years [80].382

For each image, 109 features are extracted using the Active Appearance Model (AAM), a383

commonly adopted appearance-based approach that models the shape and texture of the face [73,81].384

As in Section 5.4, the radial kernel defined in equation (24) is chosen for each of the DR methods KPCA,385

SKPCA, and KLDA. Additionally, the modified link function from equation (25) is applied in the386

SKPCA algorithm. Thus, the tuning parameter δ in the radial kernel and η in the modified link function387

must be selected. As in our experiments on Morph-II, linear SVM is chosen as the classifier for FG-NET.388

On Morph-II, values of the cost parameter c ranging from 10−8 to 108 were tested. On FG-NET, we389

have observed convergence issues in the SVM algorithm for values of c exceeding 10, so only the390

values 10−8, 10−7, . . . , 10−1, 1, 10 are tested. The considered tuning parameters are summarized in391

Table 7.392

For cross-validation, we use leave-one-person-out (LOPO), the most well-accepted scheme for393

FG-NET [80]. LOPO is a variation of k-fold cross-validation that produces independent training and394

testing folds in longitudinal datasets. The number of folds k is set equal to the number of subjects in the395

dataset, so k = 82 here. For i = 1, 2, . . . 82, testing fold i contains only images of person i, while training396

fold i contains all remaining images. Similarly to on Morph-II, we choose the mean classification397

accuracy over the testing folds to be the evaluation criterion.398
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Table 7. Parameter Summary for FG-NET

Dimension Reduction

KPCA δ = 3.2, 3.26, 3.3, 3.4, 3.46, 3.53, 3.6, 3.6, 3.73, 3.8

SKPCA δ = 0.0098

η = 0.001, 0.01, 0.1, 1

KLDA δ = 3, 3.5, 4.1, 4.6, 5.2, 5.7, 6.3, 6.8, 7.4, 8

Classifier Linear SVM c = 10−8, . . . , 10−1, 1, 10

Table 8. Gender Classification Results on FG-NET

Method Parameters Acc(1) TPR(2) TNR(3)

KPCA
δ = 3.26, c = 10 0.7025 0.7325 0.6621
δ = 3.3, c = 10 0.6932 0.7233 0.6528
δ = 3.4, c = 10 0.6801 0.6651 0.7001

SKPCA
δ = 0.0098, η = 0.1, c = 10 0.7154 0.7542 0.6633
δ = 0.0098, η = 1, c = 0.1 0.6933 0.7413 0.6289
δ = 0.0098, η = 0.01, c = 0.1 0.6893 0.7701 0.5809

KLDA
δ = 3, c = 0.01 0.7225 0.7593 0.6730
δ = 5.7, c = 1 0.7176 0.7810 0.6324
δ = 8, c = 0.1 0.7131 0.7431 0.6727

(1) Acc represents mean accuracy.
(2) TPR represents mean true positive rate (recall/sensitivity): the proportion of male faces correctly classified.
(3) TNR represents mean true negative rate (specificity): the proportion of female faces correctly classified.
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Figure 6. Receiver operating characteristic (ROC) curve and area under the curve (AUC) are compared
by method for gender classification on FG-NET. Each color corresponds to a DR method.

For each fold, we transform and reduce the dimension of the features through each DR method.399

In all cases, a dimension of 100 is retained to facilitate comparison with the results on Morph-II. The400

transformed, dimension-reduced features then predict the gender of the testing fold’s images through401

a linear SVM. The predicted classes from SVM are also mapped to probabilities through [78], similarly402

as in Section 6. The gender classification accuracy is calculated for the testing fold. Finally, all such403



Version May 23, 2019 submitted to Intelligent Data Analysis 18 of 24

testing classification accuracies are averaged to compute the mean classification accuracy from testing;404

the testing probabilities are used to form ROC curves.405

The optimum gender classification results on FG-NET are presented in Table 8. The maximum406

classification accuracy of about 72.25% is achieved by KLDA. For other choices of parameters, KLDA407

reaches above 71% accuracy, which is close to the maximum accuracy attained by SKPCA. Meanwhile,408

the peak accuracy reached by KPCA is 70.25%. In general here, KLDA is observed to outperform409

SKPCA and KPCA, while SKPCA tends to surpass KPCA. In most cases, the probability of correctly410

classifying males (sensitivity/true positive rate) is higher than the probability of correctly classifying411

females (specificity/true negative rate). For each DR method, an ROC curve (corresponding to the412

results from Table 8 with maximal mean classification accuracy) is displayed in Figure 6. The area413

under the curve (AUC) is highest for KLDA, followed by KPCA then SKPCA.414

Overall, the gender classification results on Morph-II are stronger than on FG-NET. Lower415

accuracy on FG-NET could be caused by the greater number of minors (aged 0-18), who have been416

more difficult to classify than adults in some studies [35,82]. Additionally, there are substantially fewer417

faces for training in FG-NET versus Morph-II (under 1000 versus 10280 images). Another contributor418

could be the choice of features and its dimension; the AAM features have dimension 109 on FG-NET,419

while the HOG, LBP, and BIF features have dimensions ranging from 500 to thousands on Morph-II.420

SKPCA reaches peak performance on Morph-II, while KLDA attains optimal results on FG-NET.421

However, the results on Morph-II and FG-NET are similar in that the supervised methods KLDA and422

SKPCA outperform the unsupervised method KPCA for gender classification. Further, both datasets423

evidence that female faces are more challenging to classify than male faces.424

8. Computational Framework for Practical Systems425

To tackle the challenges of high dimensionality and intensive computation for large-scale426

databases (like Morph-II, as shown in the Time column of Table 5) in real-world applications, we427

propose a computational framework to substantially decrease runtime.428

Our approach involves parallel computing, the bootstrap resampling method, and ensemble429

learning. Let M1 denote the main training set and M2 the testing set. If M1 is very large, we can save430

some time by drawing bootstrapped samples from M1. Let Si denote the ith bootstrapped sample431

from M1. Send Si to a core (or processor), Core i. Train the model on Si. Test on the full testing set432

M2, obtaining a set of gender predictions corresponding to Core i and Si. Repeat this process for all433

bootstrapped samples and corresponding cores i. The final predictions are obtained by taking the434

majority rule of the predictions from all i cores and samples. Hence, the results from this scheme435

approximate the results from the full Morph-II. This framework is summarized in Figure 7.436
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Figure 7. Flowchart representing the parallel computational framework for practical systems proposed
for Morph-II and other large datasets.

To explore the effectiveness, this framework is applied to Morph-II with a selection of BIF, LBP,437

and HOG features as preliminary studies. This experiment is implemented through the HiPerGator438

2.0 supercomputer at University of Florida with five cores per combination of feature and dimension439

reduction method. Following the subsetting scheme discussed in Section 5.2, for simplicity, we consider440

only the case of bootstrapping image samples from S1 for training, while each image from S2 ∪ R is441

used for testing.442

Table 9. Classification Results Based on Bootstrapping

Method Feature Accuracy Memory (gb) Time (min)

KPCA BIF s = s7− 37, γ = 0.4 0.9330 27.59 90
HOG s = 12, o = 8 0.9178 29.77 101
LBP s = 10, r = 1 0.8927 25.85 37

SKPCA BIF s = s7− 37, γ = 0.4 0.9417 53.28 89
HOG s = 12, o = 8 0.9056 51.43 74
LBP s = 10, r = 1 0.9274 20.33 24

KLDA BIF s = s7− 37, γ = 0.4 0.9416 30.99 100
HOG s = 12, o = 8 0.9133 25.42 102
LBP s = 10, r = 1 0.9118 17.05 26

We evaluate this framework by comparing the approximated results in Table 9 to the results from443

Table 5. For each combination of feature and dimension reduction method, each of the five cores444

independently trains a bootstrapped sample of 1000 images from S1 and tests on S2 ∪ R. Then the445

gender predictions over all five cores are compared with a simple majority rule; e.g., if an image is446

predicted male for three images and female for two images, the final gender prediction is male. The447

times in Table 9 are the total runtimes for this process, which include training and testing on HPC.448

Therefore, the times and memory can be compared between Tables 5 and 9. A distinction is that in449

Table 5, results are averaged for the alternating scheme, while in Table 9, the results are only from450

when S1 is used for training and S2 ∪ R for testing.451

It is shown in Table 9 that, in many cases, the accuracy rates from the approximations are452

similar to those from the main approach in Table 5. This is a very good result, especially considering453

that the bootstrapping approach uses no more than 5000 images total for training, while the main454

approach used all 10280 images for training. This finding suggests that our methods may perform455

reasonably well on Morph-II with smaller training sets. The most substantial difference between the456
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bootstrapped approach and the main approach is in the runtime. For all combinations of features457

and dimension reduction methods, the bootstrapping approach has decreased the runtime to under458

two hours. Meanwhile, the main approach in Table 5 yields runtimes exceeding 20 hours. Hence, our459

preliminary results indicate the parallel approximation approach can attain similar accuracy rates to460

the main approach, while substantially saving time. Such a result is promising for practical gender461

classification systems, where gender predictions must be made in real-time.462

9. Conclusion463

We have performed a comparative study of the nonlinear dimension reduction methods KPCA,464

SKPCA, and KLDA. These kernel-based methods are first applied to three simulated datasets for465

visualization and comparison. SKPCA and KLDA outperform KPCA, reinforcing the need for466

supervised approaches in classification tasks. The radial kernel performed well, encouraging its467

use for face analysis.468

Next, we have proposed and evaluated a new machine learning process for Morph-II. First,469

we use a novel subsetting scheme that reduces class imbalances while establishing independence470

between training and testing sets. Then we preprocess Morph-II photographs and extract three471

appearance-based features: HOG, LBP, and BIF. We transform and reduce the dimension of these472

features through KPCA, SKPCA, and KLDA. Linear SVM classifies the gender of Morph-II subjects,473

reaching accuracy rates of 95%. With promising preliminary results on Morph-II, a practical474

computational framework is offered that reduces runtime through parallelization and approximation.475

The performance of the dimension reduction methods are further compared through an476

application to the FG-NET dataset. Images are represented through the appearance-based AAM477

features; transformed and reduced in dimension through KPCA, SKPCA, and KLDA; and classified478

as containing a male or female subject through linear SVM. While SKPCA performed optimally479

on Morph-II, KLDA reached top performance on FG-NET with 72% leave-one-person-out (LOPO)480

accuracy.481

Further directions of research involve automatic tuning parameter selection, reduction of482

computational cost, and application to other face analysis tasks. Our approach could yield improved483

results with better choices of parameters, but it is impossible to anticipate and try all combinations.484

Automatic parameter selection for kernels could help identify a good set of parameters more easily.485

Perhaps the most important future direction of research on Morph-II is to reduce computational cost.486

For many practical demographic analysis systems, predictions must be made in real-time. For our487

gender classification methods, our parallel approximation approach substantially reduced runtime488

while attaining similar accuracy rates to the main approach. Such computational strategies should489

be further investigated to help bring gender classification and other face analysis tasks to practical490

implementation. Finally, our machine learning pipeline for Morph-II could be generalized to race491

classification or even age estimation.492
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